Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

The optical counterparts of γ-ray bursts

Abstract

The origin of γ-ray bursts—which are among the most energetic events in the Universe—has puzzled astronomers for 25 years. Since 1991, new events have been discovered at a rate of about one per day, but because their positions were poorly determined, the objects responsible for these outbursts could not be identified. Now, following the launch of the BeppoSAX satellite in 1996, γ-ray bursts have been rapidly and accurately located, which has led to the breakthrough discoveries of X-ray and optical counterparts in 1997, and the demonstration that these objects are in general very distant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The optical decay of the transients associated with the bursts GRB970228, GRB970508 and GRB971227.
Figure 2: The optical follow-up observations of γ-ray bursts.

Similar content being viewed by others

References

  1. Klebesadel, R. W. et al. Astrophys. J. 182, L85–L88 (1973).

    Google Scholar 

  2. Atteia, J. L. et al. Asecond catalog of gamma-ray bursts—1978–1980 localizations from the interplanetary network. Astrophys. J. Suppl. 64, 305–382 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Barthelmy, S. D. et al. in Gamma-Ray Bursts (eds Fishman, G. J., Brainerd, J. J. & Hurley, K.) 643–647 (AIP Conf. Proc. 307, Am. Inst. Phys., New York, 1994).

    Google Scholar 

  4. Sokolov, V. V., Kopylov, A. I., Zharykov, S. V., Kurt, V. G. & Berezin, A. V. The search and investigation of faint blue star-like objects in the GRB error boxes. Astrophys. Space Sci. 231, 343–346 (1995).

    Article  ADS  Google Scholar 

  5. Harrison, T. E., McNamara, B. J. & Klemola, A. R. Optical studies of gamma-ray burst fields, 1: GRB 790329. Astron. J. 107, 254–260 (1994).

    Article  ADS  Google Scholar 

  6. Vrba, F. J., Hartmann, D. H. & Jennings, M. C. Deep optical counterpart searches of gamma-ray burst localizations. Astrophys. J. 446, 115–149 (1995).

    Article  ADS  Google Scholar 

  7. Larson, S. B., McLean, I. S. & Becklin, E. E. Luminous galaxies near gamma-ray burst positions. Astrophys. J. 460, L95–L97 (1996).

    Article  ADS  Google Scholar 

  8. Boer, M. et al. ROSAT-pointed observations of two gamma-ray burst error boxes. Astron. Astrophys. 277, 503–509 (1993).

    ADS  Google Scholar 

  9. McNamara, B. J. et al. Ground-based gamma-ray burst follow-up efforts: results of the first two years of the BATSE/COMPTEL/NMSU rapid response network. Astrophys. J. Suppl. 103, 173–181 (1996).

    Article  ADS  Google Scholar 

  10. Hudec, R. et al. European observation network: first experience with BACODINE triggers. Astrophys. Space Sci. 231, 335–338 (1995).

    Article  ADS  Google Scholar 

  11. Feroci, M. et al. BeppoSAX follow-up search for the X-ray afterglow of GRB970111. Astron. Astrophys. 332, L29–L33 (1998).

    ADS  Google Scholar 

  12. Galama, T. et al. The decay of the optical emission from the γ-ray burst GRB970228. Nature 387, 479–482 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Sahu, K. C. et al. The optical counterpart to γ-ray burst GRB 970228 observed using the Hubble Space Telescope. Nature 387, 476–0-478 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Harrison, T. E., McNamara, B. J. & Mason, P. A. IAU Circ.No. 6632 (1997).

    Google Scholar 

  15. Sahu, K. C. et al. Observations of GRB 970228 and GRB 970508 and the neutron star merger model. Astrophys. J. 489, L127–L131 (1997).

    Article  ADS  Google Scholar 

  16. Metzger, M. R. et al. Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997. Nature 387, 878–880 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Frail, D., Kulkarni, S. R., Nicastro, S. R., Feroci, M. & Taylor, G. B. The radio afterglow from the γ-ray burst of 8 May 1997. Nature 389, 261–263 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Connaughton, V., Kippen, R. M., Preece, R., Pendleton, G. N. & Barthelmy, S. D. IAU Circ.No. 6683 (1997).

    Google Scholar 

  19. Marshall, F. E., Takeshima, T., Barthelmy, S. D., Robinson, C. R. & Hurley, K. IAU Circ.6683 (1997).

    Google Scholar 

  20. Murakami, T., Fujimoto, R., Ueda, Y. & Shibata, R. IAU Circ. No. 6687 (1997).

    Google Scholar 

  21. Griener, J. et al. IAU Circ. No. 6722 (1997).

    Google Scholar 

  22. Harrison, T. E. et al. IAU Circ. No. 6721 (1997).

    Google Scholar 

  23. Stanek, K. Z., Sasselov, D. D., Garcia, M. R. & Robinson, C. R. IAU Circ. No. 6723 (1997).

    Google Scholar 

  24. Kulkarni, S. R. et al. IAU Circ. No. 6723 (1997).

    Google Scholar 

  25. Remillard, R., Wood, A., Smith, D. & Levine, A. IAU Circ. No. 6726 (1997).

    Google Scholar 

  26. Castro-Tirado, A. J. et al. IAU Circ. No. 6730 (1997).

    Google Scholar 

  27. Frail, D. A. & Kulkarni, S. R. IAU Circ. No. 6730 (1997).

    Google Scholar 

  28. Heise, J. et al. IAU Circ. No. 6787 (1997).

    Google Scholar 

  29. Halpern, J., Thorstensen, J., Helfand, D. & Costa, E. IAU Circ. No. 6788 (1997).

    Google Scholar 

  30. Rhoads, J. IAU Circ. No. 6793 (1997).

    Google Scholar 

  31. Diercks, A. et al. IAU Circ. No. 6791 (1997).

    Google Scholar 

  32. Kulkarni, S. R. et al. Identification of a host galaxy at redshift z = 3.42 for the γ-ray burst of 14 December 1997. Nature 393, 35–39 (1998).

    Article  ADS  CAS  Google Scholar 

  33. Coletta, A. et al. IAU Circ. No. 6796 (1997).

    Google Scholar 

  34. Piro, L. et al. IAU Circ. No. 6797 (1997).

    Google Scholar 

  35. Paczynski, B. & Rhoades, J. E. Radio transients from gamma-ray bursters. Astrophys. J. 418, L5–L8 (1993).

    Article  ADS  Google Scholar 

  36. Katz, J. I. Low frequency spectra of gamma-ray bursts. Astrophys. J. 432, L107–L109 (1994).

    Article  ADS  Google Scholar 

  37. Meszaros, P. & Rees, M. Optical and long-wavelength afterglow from gamma-ray bursts. Astrophys. J. 476, 232–237 (1997).

    Article  ADS  Google Scholar 

  38. Liang, E., Kusunose, M., Smith, I. A. & Crider, A. Physical model of gamma-ray burst spectral evolution. Astrophys. J. 479, L35–L38 (1997).

    Article  ADS  CAS  Google Scholar 

  39. Katz, J. I., Piran, T. & Sari, R. Implications of the visible and X-ray counterparts to GRB970228. Phys. Rev. Lett. 80, 1580–1581 (1998).

    Article  ADS  CAS  Google Scholar 

  40. Tinney, C., Stathakis, R., Cannon, R. & Galama, T. IAU Circ. No. 6896 (1998).

    Google Scholar 

  41. Djorgovski, S. G. et al. The optical counterpart of the γ-ray burst GRB970508. Nature 387, 876–878 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Ryan, G. Fishman and W. Webber for their long-term support of GRB counterpart search work. We also acknowledge the support of NASA.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNamara, B., Harrison, T. The optical counterparts of γ-ray bursts. Nature 396, 233–236 (1998). https://doi.org/10.1038/24317

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/24317

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing