Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

State-dependent receptive-field restructuring in the visual cortex

Abstract

To extract important information from the environment on a useful timescale, the visual system must be able to adapt rapidly to constantly changing scenes. This requires dynamic control of visual resolution, possibly at the level of the responses of single neurons. Individual cells in the visual cortex respond to light stimuli on particular locations (receptive fields) on the retina, and the structure of these receptive fields can change in different contexts1,2,3,4. Here we show experimentally that the shape of receptive fields in the primary visual cortex of anaesthetized cats undergoes significant modifications, which are correlated with the general state of the brain as assessed by electroencephalography: receptive fields are wider during synchronized states and smaller during non-synchronized states. We also show that cortical receptive fields shrink over time when stimulated with flashing light spots. Finally, by using a network model we account for the changing size of the cortical receptive fields by dynamically rescaling the levels of excitation and inhibition in the visual thalamus and cortex. The observed dynamic changes in the sizes of the cortical receptive field could be a reflection of a process that adapts the spatial resolution within the primary visual pathway to different states of excitability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temporal characteristics of LGN responses to flashing light spots (peristimulus time histograms) during different EEG states.
Figure 2: Changing shape of cortical receptive fields during different EEG states.
Figure 3: Scatter plot of EEG state versus subfield width for 97 subfields.
Figure 4: Shrinking of the receptive-field width for cortical cells as time after stimulation increases.
Figure 5: Model of the primary visual pathway during a synchronized and a non-synchronized EEG, and receptive-field maps for the corresponding states.

Similar content being viewed by others

References

  1. Knierim, J. J. & van Essen, D. C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J. Neurophysiol. 67, 961–980 (1992).

    Article  CAS  Google Scholar 

  2. Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J. & Davis, J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378, 492–496 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Zipser, K., Lamme, V. A. & Schiller, P. H. Contextual modulation in primary visual cortex. J. Neurosci. 16, 7376–7389 (1996).

    Article  CAS  Google Scholar 

  4. Gilbert, C. D. Adult cortical dynamics. Physiol. Rev. 78, 467–485 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Steriade, M., McCormick, D. A. & Sejnowski, T. J. Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685 (1993).

    Article  ADS  CAS  Google Scholar 

  6. McCarley, R. W., Benoit, O. & Barrionuevo, G. Lateral geniculate nucleus unitary discharge in sleep and waking: state- and rate-specific aspects. J. Neurophysiol. 50, 7980–818 (1983).

    Article  Google Scholar 

  7. Funke, K. & Eysel, U. T. EEG-dependent modulation of response dynamic of cat dLGN relay cells and the contribution of the corticogeniculate feedback. Brain Res. 573, 217–227 (1992).

    Article  CAS  Google Scholar 

  8. Sawai, H., Morigiwa, K. & Fukuda, Y. Effects of EEG synchronization on visual responses of cat's lateral geniculate relay cells: a comparison among Y, X and W cells. Brain Res. 455, 394–400 (1988).

    Article  CAS  Google Scholar 

  9. Lo, F. S., Lu, S. M. & Sherman, S. M. Intracellular and extracellular in vivo recording of different response modes for relay cells of the cat's lateral geniculate nucleus. Exp. Brain Res. 83, 317–328 (1991).

    Article  CAS  Google Scholar 

  10. DeAngelis, G. C., Ohzawa, I. & Freeman, R. D. Spatiotemporal organization of simple-cell receptive fields in the cats striate cortex. 1. General characteristics and postnatal development. J. Neurophysiol. 69, 1091–1117 (1993).

    Article  CAS  Google Scholar 

  11. Eckhorn, R., Krause, F. & Nelson, J. J. The RF-cinematogram—a cross-correlation technique for mapping several visual receptive fields at once. Biol. Cybern. 69, 37–55 (1993).

    Article  CAS  Google Scholar 

  12. Steriade, M. Arousal: revisiting the reticular activating system. Science 272, 225–226 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Ahlsen, G., Lindstroem, S. & Lo, F.-S. Interaction between inhibitory pathways to principal cells in the lateral geniculate nucleus of the cat. Exp. Brain Res. 58, 134–143 (1985).

    Article  CAS  Google Scholar 

  14. Steriade, M., Domich, L., Oakson, G. & Deschenes, M. The deafferented reticular thalamic nucleus generates spindle rhythmicity. J. Neurophysiol. 57, 260–273 (1987).

    Article  CAS  Google Scholar 

  15. Timofeev, I. & Steriade, M. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J. Neurophysiol. 76, 4152–4168 (1996).

    Article  CAS  Google Scholar 

  16. Jahnsen, H. & Llinas, R. Electrophysiological properties of guinea-pig thalamic neurons: an in vitro study. J. Physiol. 349, 205–226 (1984).

    Article  CAS  Google Scholar 

  17. McCormick, D. A. & Pape, H. C. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurons. J. Physiol. 431, 291–318 (1990).

    Article  CAS  Google Scholar 

  18. Wörgötter, F., Nelle, E., Li, B. & Funke, K. The influence of corticofugal feedback on the temporal structure of visual response of cat thalamic relay cells. J. Physiol. 509, 797–815 (1998).

    Article  Google Scholar 

  19. Funke, K. & Eysel, U. T. Inverse correlation of firing patterns of single topographically matched perigeniculate neurons and cat dorsal lateral geniculate relay cells. Vis. Neurosci. 15, 711–729 (1998).

    Article  CAS  Google Scholar 

  20. Ulrich, D. J., Cucchiaro, J. B., Humphrey, A. L. & Sherman, S. M. Morphology and axonal projection patterns of individual neurons in the cat perigeniculate nucleus. J. Neurophysiol. 65, 1528–1541 (1991).

    Article  Google Scholar 

  21. Bal, T. & McCormick, D. A. Ionic mechanisms of rhythmic burst firing and tonic activity in the nucleus reticulais thalami, a mammalian pacemaker. J. Physiol. 468, 669–691 (1993).

    Article  CAS  Google Scholar 

  22. Sherman, S. M. & Guillery, R. W. Functional organization of thalamocortical relays. J. Neurophysiol. 76, 1367–1395 (1996).

    Article  CAS  Google Scholar 

  23. Aertsen, A. M. H. J., Gerstein, G. L., Habib, M. K. & Palm, G. Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J. Neurophysiol. 61, 900–917 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the DFG and the HFSP. We thank J. Macklis for suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florentin Wörgötter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wörgötter, F., Suder, K., Zhao, Y. et al. State-dependent receptive-field restructuring in the visual cortex. Nature 396, 165–168 (1998). https://doi.org/10.1038/24157

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24157

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing