Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor

Abstract

The bacterial chemotaxis receptors are transmembrane receptors with a simple signalling pathway which has elements relevant to the general understanding of signal recognition and transduction across membranes, how signals are relayed between molecules in a pathway, and how adaptation to a persistent signal is achieved1. In contrast to many mammalian receptors which signal by oligomerizing upon ligand binding2, the chemotaxis receptors are dimeric even in the absence of their ligands, and their signalling does not depend on a monomer–dimer equilibrium3. Bacterial chemotaxis receptors are composed of a ligand-binding domain, a transmembrane domain consisting of two helices TM1 and TM2, and a cytoplasmic domain. All known bacterial chemotaxis receptors have a highly conserved cytoplasmic domain, which unites signals from different ligand domains into a single signalling pathway to flagella motors. Here we report the crystal structure of the cytoplasmic domain of a serine chemotaxis receptor of Escherichia coli, which reveals a 200 å-long coiled-coil of two antiparallel helices connected by a ‘U-turn’. Two of these domains form a long, supercoiled, four-helical bundle in the cytoplasmic portion of the receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The transmembrane serine chemotaxis receptor of E.coli.
Figure 2: Two views of the cTsrQ dimer structure related by a 90-degree rotation around the non-crystallographic two-fold axis along the length of the molecules.
Figure 3: Typical regions of the solvent-flattened experimental electron density map (contoured at a 12σ level) superposed with the final structural model of cTsrQ.
Figure 4: Trimer of cTsr dimers.
Figure 5: Model of an intact Ecoli Tsr receptor dimer.

Similar content being viewed by others

References

  1. Falke, J. J., Bass, R. B., Butler, S. L., Chervitz, S. A. & Danielson, M. A. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu. Rev. Cell Biol. Dev. Biol. 13, 457–512 (1997).

    Article  CAS  Google Scholar 

  2. Ullrich, A. & Schlessinger, J. Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203–212 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Chervitz, S. A. & Falke, J. J. Molecular mechanism of transmembrane signaling by the aspartate receptor: a model. Proc. Natl Acad. Sci. USA 93, 2545–2550 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Le Moual, H. & Koshland, D. E. J Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis. J. Mol. Biol. 261, 568–585 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Cochran, A. G. & Kim, P. S. Imitation of Escherichia coli aspartate receptor signaling in engineered dimers of the cytoplasmic domain. Science 271, 1113–1116 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Ames, P., Yu, Y. A. & Parkinson, J. S. Methylation segments are not required for chemotactic signalling by cytoplasmic fragments of Tsr, the methyl-accepting serine chemoreceptor of Escherichia coli. Mol. Microbiol. 19, 737–746 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Surette, M. G. & Stock, J. B. Role of α-helical coiled-coil interactions in receptor dimerization, signaling, and adaptation during bacterial chemotaxis. J. Biol. Chem. 271, 17966–17973 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Maddock, J. R. & Shapiro, L. Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259, 1717–1723 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Liu, Y., Levit, M., Lurz, R., Surette, M. G. & Stock, J. B. Receptor-mediated protein kinase activation and the mechanism of transmembrane signaling in bacterial chemotaxis. EMBO J. 16, 7231–7240 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chi, Y. I., Yokota, H. & Kim, S.-H. Apo structure of the ligand-binding domain of aspartate receptor from Escherichia coli and its comparison with ligand-bound or pseudoligand-bound structures. FEBS Lett. 414, 327–332 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Lynch, B. A. & Koshland, D. E. J The fifth Datta Lecture. Structural similarities between the aspartate receptor of bacterial chemotaxis and the trp repressor of E. coli. Implications for transmembrane signaling. FEBS Lett. 307, 3–9 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Gardina, P. J. & Manson, M. D. Attractant signaling by an aspartate chemoreceptor dimer with a single cytoplasmic domain. Science 274, 425–426 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Tatsuno, I., Homma, M., Oosawa, K. & Kawagishi, I. Signaling by the Escherichia coli aspartate chemoreceptor Tar with a single cytoplasmic domain per dimer. Science 274, 423–425 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Hughson, A. G. & Hazelbauer, G. L. Detecting the conformational change of transmembrane signaling in a bacterial chemoreceptor by measuring effects on disulfide cross-linking in vivo. Proc. Natl Acad. Sci. USA 93, 11546–11551 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Milburn, M. V. et al. Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand. Science 254, 1342–1347 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Kim, S.-H. “Frozen” dynamic dimer model for transmembrane signaling in bacterial chemotaxis receptors. Protein Sci. 3, 159–165 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Maruyama, I. N., Mikawa, Y. G. & Maruyama, H. I. Amodel for transmembrane signaling by the aspartate receptor based on random-cassette mutagenesis and site-directed disulfide cross-linking. J. Mol. Biol. 253, 530–546 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Borkovich, K. A., Alex, L. A. & Simon, M. I. Attenuation of sensory receptor signaling by covalent modification. Proc. Natl Acad. Sci. USA 89, 6756–6760 (1992).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ames, P. & Parkinson, J. S. Transmembrane signaling by bacterial chemoreceptors: E. coli transducers with locked signal output. Cell 55, 817–826 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Ames, P., Chen, J., Wolff, C. & Parkinson, J. S. Structure–function studies of bacterial chemosensors. Cold Spring Harb. Symp. Quant. Biol. 53, 59–65 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Danielson, M. A., Bass, R. B. & Falke, J. J. Cysteine and disulfide scanning reveals a regulatory α-helix in the cytoplasmic domain of the aspartate receptor. J. Biol. Chem. 272, 32878–32888 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Bass, R. B. & Falke, J. J. Detection of a conserved α-helix in the kinase docking region of the aspartate receptor by cysteine and disulfide scanning. J. Biol. Chem. 273, 25006–25014 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Kunkel, T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl Acad. Sci. USA 82, 488 (1985).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jancarik, J. & Kim, S.-H. Sparse matrix sampling: a screening method for crystallization of proteins. J. Appl. Crystallogr. 24, 409–411 (1991).

    Article  CAS  Google Scholar 

  25. Otwinowski, Z. in Data Collection and Processing (eds Sawyer, L., Isaacs, N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington, UK, (1993).

    Google Scholar 

  26. Collaborative Computing Project No. 4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  27. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for binding protein models inelectron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  28. Brünger, A. T. X-PLOR Version 3.1 (Yale Univ. Press, New Haven, CT, (1993).

    Google Scholar 

  29. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thronton, J. M. Procheck: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  30. Kraulis, P. I. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Sweet, P. Kuhn and H. Bellamy for data collection; D. King for performing the electrospray mass spectrometry; C. Park for plasmid HB915; K. Kamata for help with sample preparation; Z. Zhang and E. Berry for preparing some of the figures; and J. Falke and S. Parkinson for discussion. This work was supported by grants from the Office of Biological and Environmental Research, Office of Science, DOE and the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Hou Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Yokota, H. & Kim, SH. Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400, 787–792 (1999). https://doi.org/10.1038/23512

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23512

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing