Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum

Abstract

Analysis of Plasmodium falciparum chromosome 3, and comparison with chromosome 2, highlights novel features of chromosome organization and gene structure. The sub-telomeric regions of chromosome 3 show a conserved order of features, including repetitive DNA sequences, members of multigene families involved in pathogenesis and antigenic variation, a number of conserved pseudogenes, and several genes of unknown function. A putative centromere has been identified that has a core region of about 2 kilobases with an extremely high (adenine + thymidine) composition and arrays of tandem repeats. We have predicted 215 protein-coding genes and two transfer RNA genes in the 1,060,106-base-pair chromosome sequence. The predicted protein-coding genes can be divided into three main classes: 52.6% are not spliced, 45.1% have a large exon with short additional 5′ or 3′ exons, and 2.3% have a multiple exon structure more typical of higher eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: P.falciparum chromosome 3.
Figure 2: Splicing in the gene PFC0935C.
Figure 3: Telomere organization in P.falciparum.
Figure 4: Putative P.falciparum centromeres.

Similar content being viewed by others

References

  1. World Health Organisation A Global Strategy for Malaria Control (World Health Organisation, Genev, (1993).

  2. MacPherson, G. G., Warrell, M. J., White, N. J., Looareesuwan, S. & Warrell, D. A. Human cerebral malaria. A quantitative ultrastructural analysis of parasitised erythrocyte sequestration. Am. J. Pathol. 119, 385–401 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. White, N. J. The treatment of malaria. N. Engl. J. Med. 335, 800–806 (1996).

    Article  CAS  Google Scholar 

  4. Hoffman, S. L. et al. Funding for malaria genome sequencing. Nature 387, 647 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Pollack, Y., Katzen, A. L., Spira, D. T. & Golenser, J. The genome of Plasmodium falciparum. I: DNA base composition. Nucleic Acids Res. 10, 539–546 (1982).

    Article  CAS  Google Scholar 

  6. Churcher, C. et al. The nucleotide sequence of Saccharomyces cerevisiae chromosome IX. Nature (suppl.) 387, 84–87 (1997).

    CAS  Google Scholar 

  7. Gardner, M. J. et al. Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. Science 282, 1126–1132 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Thompson, J. K. & Cowman, A. F. AYAC contig and high resolution restriction map of chromosome 3 from Plasmodium falciparum. Mol. Biochem. Parasitol. 90, 537–542 (1997).

    Article  CAS  Google Scholar 

  9. Triglia, T. & Kemp, D. J. Large fragments of Plasmodium falciparum DNA can be stable when cloned in yeast artificial chromosomes. Mol. Biochem. Parasitol. 44, 207–212 (1991).

    Article  CAS  Google Scholar 

  10. Gardiner, K. et al. YAC analysis and minimal tiling path construction for chromosome 21q. Somat. Cell. Mol. Genet. 21, 399–414 (1995).

    Article  CAS  Google Scholar 

  11. Vaudin, M. et al. The construction and analysis of M13 libraries prepared from YAC DNA. Nucleic Acids Res. 23, 670–674 (1995).

    Article  CAS  Google Scholar 

  12. Walliker, D. et al. Genetic analysis of the human malaria parasite Plasmodium falciparum. Science 236, 1661–1666 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Aston, C., Mishra, B. & Schwartz, D. C. Optical mapping and its potential for large scale sequencing projects. Trends Biotechnol. 17, 297–302 (1999).

    Article  CAS  Google Scholar 

  14. The C. elegans sequencing consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

  15. Dame,,, J. B. et al. Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparum. Science 225, 593–599 (1984).

    Google Scholar 

  16. Enea, V. et al. DNA cloning of Plasmodium falciparum circumsporozoite gene: amino acid sequence of the repetitive epitope. Science 225, 628–630 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Trottein, F., Triglia, T. & Cowman, A. F. Molecular cloning of a gene from Plasmodium falciparum that codes for a protein sharing motifs found in adhesive molecules from mammals and Plasmodia. Mol. Biochem. Parasitol. 74, 129–141 (1995).

    Article  CAS  Google Scholar 

  18. Li, W. B. et al. An enlarged largest subunit of Plasmodium falciparum RNA polymerase II defines conserved and variable RNA polymerase domains. Nucleic Acids Res. 17, 9621–9636 (1989).

    Article  CAS  Google Scholar 

  19. Berriman, M. & Fairlamb, A. H. Detailed characterisation of a cyclophilin from the human malaria parasite Plasmodium falciparum. Biochem. J. 334, 437–445 (1998).

    Article  CAS  Google Scholar 

  20. Bateman, A. et al. Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Res. 27, 260–262 (1999).

    Article  CAS  Google Scholar 

  21. Wootton, J. C. & Federhen, S. Analysis of compositionally biased regions in sequence databases. Methods Enzymol. 266, 554–571 (1996).

    Article  CAS  Google Scholar 

  22. Lanzer, M., de Bruin, D. & Ravetch, J. V. Transcriptional mapping of a 100?kb locus of Plasmodium falciparum identifies a region in which transcription terminates and reinitiates. EMBO J. 11, 1949–1955 (1992).

    Article  CAS  Google Scholar 

  23. Horrocks, P., Dechering, K. & Lanzer, M. Control of gene expression in Plasmodium falciparum. Mol. Biol. Parasitol. 95, 171–181 (1998).

    Article  CAS  Google Scholar 

  24. Holt, D. C. et al. The clag gene family of Plasmodium falciparum : are there roles other than cytoadherence? Int. J. Parasitol.(in the press).

  25. Wilson, R. J. M. et al. Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 261, 155–172 (1996).

    Article  CAS  Google Scholar 

  26. Soldati, D. The apicoplast as a potential therapeutic target in Toxoplasma and other apicomplexan parasites. Parasitol. Today 15, 5–7 (1999).

    Article  CAS  Google Scholar 

  27. Waller, R. F. et al. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc. Natl Acad. Sci. USA 95, 12352–12357 (1998).

    Article  ADS  CAS  Google Scholar 

  28. De Bruin, D., Lanzer, M. & Ravetch, J. V. The polymorphic subtelomeric regions of Plasmodium falciparum chromosomes contain arrays of repetitive sequence elements. Proc. Natl Acad. Sci. USA 91, 619–623 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Thompson, J. K. et al. The chromosomal organisation of the Plasmodium falciparum var gene is conserved. Mol. Biochem. Parasitol. 87, 49–60 (1997).

    Article  CAS  Google Scholar 

  30. Fischer, K. et al. Expression of var genes located within polymorphic subtelomeric domains of Plasmodium falciparum chromosomes. Mol. Cell. biol. 17, 3679–3686 (1997).

    Article  CAS  Google Scholar 

  31. Carcy, B. et al. Alarge multigene family expressed during the erythrocytic schizogony of Plasmodium falciparum. Mol. Biochem. Parasitol. 68, 221–233 (1997).

    Article  Google Scholar 

  32. Leech, J. H., Barnwell, J. W., Miller, L. H. & Howard, R. J. Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum -infected erythrocytes. J. Exp. Med. 159, 1567–1575 (1984).

    Article  CAS  Google Scholar 

  33. Kyes, S., Rowe, A., Kriek, N. & Newbold, C. I. RiFins: A second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc. Natl Acad. Sci. USA(in the press).

  34. Newbold, C. I. et al. PfEMP1, polymorphism and pathogenesis. Ann. Trop. Med. Parasitol. 91, 551–557 (1997).

    Article  CAS  Google Scholar 

  35. Pluta, A. F., Mackay, A. M., Ainsztein, A. M., Goldberg, I. G. & Earnshaw, W. C. The centromere: hub of chromosomal activities. Science 270, 1591–1594 (1995).

    Article  ADS  CAS  Google Scholar 

  36. Clarke, L. Centromeres: proteins, protein complexes, and repeated domains at centromeres of simple eukaryotes. Curr. Opin. Genet. Dev. 8, 212–218 (1998).

    Article  CAS  Google Scholar 

  37. Baum, M., Ngan, V. K. & Clarke, L. The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol. Biol. Cell 5, 747–761 (1994).

    Article  CAS  Google Scholar 

  38. Takahashi, K. et al. Alow copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol. Biol. Cell 3, 819–835 (1992).

    Article  CAS  Google Scholar 

  39. Cheng, Q. et al. stevor and rif are Plasmodium falciparum multicopy gene families which potentially encode variant antigens. Mol. Biochem. Parasitol. 97, 161–176 (1998).

    Article  CAS  Google Scholar 

  40. Garcia, A., Cayla, X., Barik, S. & Langsley, G. Afamily of PP2 phosphatases in Plasmodium falciparum and parasitic protozoa. Parasitol. Today 15, 90–91 (1999).

    Article  CAS  Google Scholar 

  41. McMurray, A. A., Sulston, J. E. & Quail, M. A. Short-insert libraries as a method fo problem solving in genome sequencing. Genome Res. 8, 562–566 (1998).

    Article  CAS  Google Scholar 

  42. Lowe, T. M. & Eddy, S. R. tRNA scan-SE: a program for improved detection of transfer RNA genes in genome sequence. Nucleic Acids Res. 25, 955–964 (1997).

    Article  CAS  Google Scholar 

  43. Mott, R. EST_GENOME: a program to align spliced DNA sequences to unspliced genomic DNA. Comput. Appl. Biosci. 13, 477–478 (1997).

    CAS  PubMed  Google Scholar 

  44. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 15, 403–410 (1990).

    Article  Google Scholar 

  45. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff in the subcloning, gel-pouring and media groups for their support; the computer support and software development groups; J. Thompson and A. Cowman for gifts of YAC clones and for advice; D. Schwartz for optical and X. Su for genetic map information; B. Streipen, D. Holt and D. Kemp for communicating results before publication; Z. Christodoulou, R. Pinches and S. Lee for technical assistance; the other members of the Malaria Genome Sequencing consortium for useful discussions; K. Rutherford and R. Summers for help with Fig.1 ; and J. Parkhill for critical reading of the manuscript. This work was funded by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bowman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowman, S., Lawson, D., Basham, D. et al. The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum. Nature 400, 532–538 (1999). https://doi.org/10.1038/22964

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22964

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing