Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Marine viruses and their biogeochemical and ecological effects

Abstract

Viruses are the most common biological agents in the sea, typically numbering ten billion per litre. They probably infect all organisms, can undergo rapid decay and replenishment, and influence many biogeochemical and ecological processes, including nutrient cycling, system respiration, particle size-distributions and sinking rates, bacterial and algal biodiversity and species distributions, algal bloom control, dimethyl sulphide formation and genetic transfer. Newly developed fluorescence and molecular techniques leave the field poised to make significant advances towards evaluating and quantifying such effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluorescence imaging of marine viruses.
Figure 2: The planktonic viral loop.
Figure 3: Modelling viral effects on carbon flow.

Similar content being viewed by others

References

  1. Azam, F., Fenchel, T., Gray, J. G., Meyer-Reil, L. A. & Thingstad, T. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).

    ADS  Google Scholar 

  2. Fuhrman, J. A. in Primary Productivity and Biogeochemical Cycles in the Sea(eds Falkowski, P. G. & Woodhead, A. D.) 361–383 (Plenum, New York, (1992).

    Google Scholar 

  3. Fuhrman, J. A., Sleeter, T. D., Carlson, C. A. & Proctor, L. M. Dominance of bacterial biomass in the Sargasso Sea and its ecological implications. Mar. Ecol. Prog. Ser. 57, 207–217 (1989).

    ADS  Google Scholar 

  4. Sieburth, J. M., Johnson, P. W. & Hargraves, P. E. Ultrastructure and ecology of Aureococcus anophagefferens gen. et sp. nov. (Chrysophyseae): the dominant picoplankter during a bloom in Narragansett Bay, Rhode Island, Summer 1985. J. Phycol. 24, 416–425 (1988).

    Google Scholar 

  5. Bergh, O., Børsheim, K. Y., Bratbak, G. & Heldal, M. High abundance of viruses found in aquatic environments. Nature 340, 467–468 (1989).

    ADS  CAS  PubMed  Google Scholar 

  6. Proctor, L. M. & Fuhrman, J. A. Viral mortality of marine bacteria and cyanobacteria. Nature 343, 60–62 (1990).

    ADS  Google Scholar 

  7. Bratbak, G., Heldal, M., Norland, S. & Thingstad, T. F. Viruses as partners in spring bloom microbial trophodynamics. Appl. Environ. Microbiol. 56, 1400–1405 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ackermann, H.-W. & DuBow, M. S. Viruses of Prokaryotes Vol. 1, General Properties of Bacteriophages (CRC, Boca Raton, (1987).

    Google Scholar 

  9. Lenski, R. E. Dynamics of interactions between bacteria and virulent bacteriophage. Adv. Microb. Ecol. 10, 1–44 (1988).

    CAS  Google Scholar 

  10. Ripp, S. & Miller, R. V. The role of pseudolysogeny in bacteriophage-host interactions in a natural freshwater environment. Microbiology 143, 2065–2070 (1997).

    CAS  Google Scholar 

  11. Moebus, K. Marine bacteriophage reproduction under nutrient-limited growth of host bacteria. 2. Investigations with phage-host system [H3:H3/1]. Mar. Ecol. Prog. Ser. 144, 13–22 (1996).

    ADS  Google Scholar 

  12. Moebus, K. Investigations of the marine lysogenic bacterium H24. II. Development of pseudolysogeny in nutrient rich broth. Mar. Ecol. Prog. Ser. 148, 229–240 (1997).

    ADS  Google Scholar 

  13. Chiura, H. X. Generalized gene transfer by virus-like particles from marine bacteria. Aquat. Microb. Ecol. 13, 75–83 (1997).

    Google Scholar 

  14. Fuhrman, J. A. & Suttle, C. A. Viruses in marine planktonic systems. Oceanography 6, 51–63 (1993).

    Google Scholar 

  15. Sharp, G. D. Enumeration of virus particles by electron micrography. Proc. Soc. Exp. Biol. Med. 70, 54–59 (1949).

    CAS  PubMed  Google Scholar 

  16. Wommack, K. E., Hill, R. T., Kessel, M., Russek-Cohen, E. & Colwell, R. R. Distribution of viruses in the Chesapeake Bay. Appl. Environ. Microbiol. 58, 2965–2970 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Børsheim, K. Y. Native marine bacteriophages. FEMS Microbiol. Ecol. 102, 141–159 (1993).

    Google Scholar 

  18. Cochlan, W. P., Wikner, J., Steward, G. F., Smith, D. C. & Azam, F. Spatial distribution of viruses, bacteria and chlorophyll a in neritic, oceanic and estuarine environments. Mar. Ecol. Prog. Ser. 92, 77–87 (1993).

    ADS  Google Scholar 

  19. Paul, J. H., Rose, J. B., Jiang, S. C., Kellogg, C. A. & Dickson, L. Distribution of viral abundance in the reef environment of Key Largo, Florida. Appl. Environ. Microbiol. 59, 718–724 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Boehme, J. et al. Viruses, bacterioplankton, and phytoplankton in the southeastern Gulf of Mexico: distribution and contribution to oceanic DNA pools. Ma. Ecol. Prog. Ser. 97, 1–10 (1993).

    ADS  Google Scholar 

  21. Maranger, R., Bird, D. F. & Juniper, S. K. Viral and bacterial dynamics in arctic sea ice during the spring algal bloom near Resolute, NWT, Canada. Mar. Ecol. Prog. Ser. 111, 121–127 (1994).

    ADS  Google Scholar 

  22. Hara, S., Koike, I., Terauchi, K., Kamiya, H. & Tanoue, E. Abundance of viruses in deep oceanic waters. Mar. Ecol. Prog. Ser. 145, 269–277 (1996).

    ADS  Google Scholar 

  23. Maranger, R. & Bird, D. E. High concentrations of viruses in the sediments of Lac Gilbert, Quebec. Microb. Ecol. 31, 141–151 (1996).

    CAS  PubMed  Google Scholar 

  24. Steward, G. F., Smith, D. C. & Azam, F. Abundance and production of bacteria and viruses in the Bering and Chukchi Sea. Mar. Ecol. Prog. Ser. 131, 287–300 (1996).

    ADS  Google Scholar 

  25. Noble, R. T. & Fuhrman, J. A. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat. Microb. Ecol. 14, 113–118 (1998).

    Google Scholar 

  26. Hennes, K. P. & Simon, M. Significance of bacteriophages for controlling bacterioplankton growth in a mesotrophic lake. Appl. Environ. Microbiol. 61, 333–340 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bratbak, G., Heldal, M., Thingstad, T. F. & Tuomi, P. Dynamics of virus abundance in coastal seawater. FEMS Microb. Ecol. 19, 263–269 (1996).

    CAS  Google Scholar 

  28. Fuhrman, J. A. & Ouverney, C. C. Marine microbial diversity studied via 16S rRNA sequences: cloning results from coastal waters and counting of native archaea with fluorescent single cell probes. Aquat. Ecol. 32, 3–15 (1998).

    CAS  Google Scholar 

  29. Hara, S., Terauchi, K. & Koike, I. Abundance of viruses in marine waters: assessment by epifluorescence and transmission electron microscopy. Appl. Environ. Microbiol. 57, 2731–2734 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hennes, K. P. & Suttle, C. A. Direct counts of viruses in natural waters and laboratory cultures by epifluorescence microscopy. Limnol. Oceanogr. 40, 1050–1055 (1995).

    ADS  CAS  Google Scholar 

  31. Weinbauer, M. G. & Suttle, C. A. Comparison of epifluorescence and transmission electron microscopy for counting viruses in natural marine waters. Aquat. Microb. Ecol. 13, 225–232 (1997).

    Google Scholar 

  32. Xenopoulos, M. A. & Bird, D. F. Microwave enhanced staining for counting viruses by epifluorescence microscopy. Limnol. Oceanogr. 42, 1648–1650 (1997).

    ADS  Google Scholar 

  33. Marie, D., Brussaard, C. P. D., Thyrhaug, R., Bratbak, G. & Vaulot, D. Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl. Environ. Microbiol. 65, 45–52 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Proctor, L. M. Advances in the study of marine viruses. Microsc. Res. Tech. 37, 136–161 (1997).

    CAS  PubMed  Google Scholar 

  35. Wommack, K. E., Ravel, J., Hill, R. T., Chun, J. S. & Colwell, R. R. Population dynamics of Chesapeake Bay virioplankton: total-community analysis by pulsed-field gel electrophoresis. Appl. Environ. Microbiol. 65, 231–240 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Steward, G. F. & Azam, F. in Microbial Biosystems: New Frontiers. Proc 8th Int. Symp. Microb. Ecol.(eds Bell, C. R., Brylinsky, M. & Johnson-Green, P.) (Atlantic Canada Society for Microbial Ecology, Halifax, Canada, (1999).

    Google Scholar 

  37. Murray, A. G. & Jackson, G. A. Viral dynamics: a model of the effects of size, shape, motion and abundance of single-celled planktonic organisms and other particles. Mar. Ecol. Prog. Ser. 89, 103–116 (1992).

    ADS  Google Scholar 

  38. Proctor, L. M. & Fuhrman, J. A. Roles of viral infection in organic particle flux. Mar. Ecol. Prog. Ser. 69, 133–142 (1991).

    ADS  Google Scholar 

  39. Mathias, C. B., Kirschner, A. K. T. & Velimirov, B. Seasonal variations of virus abundance and viral control of the bacterial production in a backwater system of the Danube River. Appl. Environ. Microbiol. 61, 3734–3740 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Proctor, L. M., Okubo, A. & Fuhrman, J. A. Calibrating estimates of phage induced mortality in marine bacteria: ultrastructural studies of marine bacteriophage development from one-step growth experiments. Microb. Ecol. 25, 161–182 (1993).

    CAS  PubMed  Google Scholar 

  41. Weinbauer, M. G. & Peduzzi, P. Significance of viruses versus heterotrophic nanoflagellates for controlling bacterial abundance in the northern Adriatic Sea. J. Plank. Res. 17, 1851–1856 (1995).

    Google Scholar 

  42. Heldal, M. & Bratbak, G. Production and decay of viruses in aquatic environments. Mar. Ecol. Prog. Ser. 72, 205–212 (1991).

    ADS  Google Scholar 

  43. Weinbauer, M. G., Fuks, D. & Peduzzi, P. Distribution of viruses and dissolved DNA along a coastal trophic gradient in the Northern Adriatic Sea. Appl. Environ. Microbiol. 59, 4074–4082 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Weinbauer, M. G. & Peduzzi, P. Frequency, size, and distribution of bacteriophages in different marine bacterial morphotypes. Mar. Ecol. Prog. Ser. 108, 11–20 (1994).

    ADS  Google Scholar 

  45. Weinbauer, M. G. & Hofle, M. G. Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl. Environ. Microbiol. 64, 431–438 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Suttle, C. A., Chan, A. M. & Cottrell, M. T. Infection of phytoplankton by viruses and reduction of primary productivity. Nature 387, 467–469 (1990).

    ADS  Google Scholar 

  47. Proctor, L. M. & Fuhrman, J. A. Mortality of marine bacteria in response to enrichments of the virus size fraction from seawater. Mar. Ecol. Prog. Ser. 87, 283–293 (1992).

    ADS  Google Scholar 

  48. Suttle, C. A. Inhibition of photosynthesis in phytoplankton by the submicron size fraction concentrated from seawater. Mar. Ecol. Prog. Ser. 87, 105–112 (1992).

    ADS  Google Scholar 

  49. Peduzzi, P. & Weinbauer, M. G. Effect of concentrating the virus-rich 2–200 nm size fraction of seawater on the formation of algal flocs (marine snow). Limnol. Oceanogr. 38, 1562–1565 (1993).

    ADS  Google Scholar 

  50. Weinbauer, M. G. & Peduzzi, P. Effect of virus-rich high molecular weight concentrates of seawater on the dynamics of dissolved amino acids and carbohydrates. Mar. Ecol. Prog. Ser. 127, 245–253 (1995).

    ADS  CAS  Google Scholar 

  51. Noble, R. T., Middelboe, M. & Fuhrman, J. A. The effects of viral enrichment on the mortality and growth of heterotrophic bacterioplankton. Aquat. Microb. Ecol.(in the press).

  52. Middelboe, M., Jørgensen, N. O. G. & Kroer, N. Effects of viruses on nutrient turnover and growth efficiency of non-infected marine bacterioplankton. Appl. Environ. Microbiol. 62, 1991–1997 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Suttle, C. A. & Chen, F. Mechanisms and rates of decay of marine viruses in seawater. Appl. Environ. Microbiol. 58, 3721–3729 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fuhrman, J. A. & Noble, R. T. Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol. Oceanogr. 40, 1236–1242 (1995).

    ADS  Google Scholar 

  55. Noble, R. T. & Fuhrman, J. A. Virus decay and its causes in coastal waters. Appl. Environ. Microbiol. 63, 77–83 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wommack, K. E., Hill, R. T., Muller, T. A. & Colwell, R. R. Effects of sunlight on bacteriophage viability and structure. Appl. Environ. Microbiol. 62, 1336–1341 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wilhelm, S. W., Weinbauer, M. G., Suttle, C. A. & Jeffrey, W. H. The role of sunlight in the removal and repair of viruses in the sea. Limnol. Oceanogr. 43, 586–592 (1998).

    ADS  Google Scholar 

  58. Wilhelm, S. W., Weinbauer, M. G., Suttle, C. A., Pledger, R. J. & Mitchell, D. L. Measurements of DNA damage and photoreactivation imply that most viruses in marine surface waters are infective. Aquat. Microb. Ecol. 14, 215–222 (1998).

    Google Scholar 

  59. Zachary, A. An ecological study of bacteriophages of Vibrio natriegens. Can. J. Microbiol. 24, 321–324 (1978).

    CAS  PubMed  Google Scholar 

  60. Bratbak, G., Heldal, M., Thingstad, T. F., Riemann, B. & Haslund, O. H. Incorporation of viruses into the budget of microbial C-transfer. A first approach. Mar. Ecol. Prog. Ser. 83, 273–280 (1992).

    ADS  Google Scholar 

  61. Steward, G. F., Wikner, J., Cochlan, W. P., Smith, D. C. & Azam, F. Estimation of virus production in the sea: II. Field results. Mar. Microb. Food Webs 6, 79–90 (1992).

    Google Scholar 

  62. Noble, R. T. The Fates of Viruses in the Marine Environment Thesis, Univ. Southern California(1998).

  63. Suttle, C. A. The significance of viruses to mortality in aquatic microbial communities. Microb. Ecol. 28, 237–243 (1994).

    CAS  PubMed  Google Scholar 

  64. Weinbauer, M. G., Fuks, D., Puskaric, S. & Peduzzi, P. Diel, seasonal, and depth-related variability of viruses and dissolved DNA in the Northern Adriatic Sea. Microb. Ecol. 30, 25–41 (1995).

    CAS  PubMed  Google Scholar 

  65. Guixa-Boixareu, N., Calderon-Paz, J. I., Heldal, M., Bratbak, G. & Pedros-Alio, C. Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat. Microb. Ecol. 11, 215–227 (1996).

    Google Scholar 

  66. Waterbury, J. B. & Valois, F. W. Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl. Environ. Microbiol. 59, 3393–3399 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Suttle, C. A. & Chan, A. M. Dynamics and distribution of cyanophages and their effect on marine Synechococcus spp. Appl. Environ. Microbiol. 60, 3167–3174 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Suttle, C. A., Chan, A. M. & Cottrell, M. T. Use of ultrafiltration to isolate viruses from seawater which are pathogens of marine phytoplankton. Appl. Environ. Microbiol. 57, 721–726 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bratbak, G., Egge, J. K. & Heldal, M. Viral mortality of the marine alga Emiliana huxleyi (Haptophyceae) and termination of algal blooms. Mar. Ecol. Prog. Ser. 93, 39–48 (1993).

    ADS  Google Scholar 

  70. Milligan, K. L. D. & Cosper, E. M. Isolation of virus capable of lysing the brown tide microalga, Aureococcus anophagefferens. Science 266, 805–807 (1994).

    ADS  CAS  PubMed  Google Scholar 

  71. Nagasaki, K. & Yamaguchi, M. Intra-species host specificity of HaV (Heterosigma akashiwo virus) clones. Aquat. Microb. Ecol. 14, 109–112 (1998).

    Google Scholar 

  72. Suttle, C. A. & Chan, A. M. Viruses infecting the marine Prymnesiophyte Chrysochromulina spp.: isolation, preliminary characterization and natural abundance. Mar. Ecol. Prog. Ser. 118, 275–282 (1995).

    ADS  Google Scholar 

  73. Mayer, J. A. & Taylor, F. J. R. Avirus which lyses the marine nanoflagellate Miromonas pusilla. Nature 281, 299–301 (1979).

    ADS  Google Scholar 

  74. Cottrell, M. T. & Suttle, C. A. Dynamics of a lytic virus infecting the photosynthetic marine picoflagellate Micromonas pusilla. Limnol. Oceanogr. 40, 730–739 (1995).

    ADS  Google Scholar 

  75. Chen, F., Suttle, C. A. & Short, S. M. Genetic diversity in marine algal virus communities as revealed by sequence analysis of DNA polymerase genes. Appl. Environ. Microbiol. 62, 2869–2874 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gobler, C. J., Hutchins, D. A., Fisher, N. S., Cosper, E. M. & SanudoWilhelmy, S. A. Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte. Limnol. Oceanogr. 42, 1492–1504 (1997).

    ADS  CAS  Google Scholar 

  77. Jacobsen, A., Bratbak, G. & Heldal, M. Isolation and characterization of a virus infecting Phaeocystis pouchetii (Prymnesiophyceae). J. Phycol. 32, 923–927 (1996).

    Google Scholar 

  78. Bratbak, G. et al. Viral activity in relation to Emiliania huxleyi blooms—a mechanism of DMSP release. Mar. Ecol. Prog. Ser. 128, 133–142 (1995).

    ADS  CAS  Google Scholar 

  79. Brussaard, C. P. D., Kempers, R. S., Kop, A. J., Riegman, R. & Heldal, M. Virus-like particles in a summer bloom of Emiliania huxleyi in the North Sea. Aquat. Microb. Ecol. 10, 105–113 (1996).

    Google Scholar 

  80. Dymond, J. & Lyle, M. Flux comparisons between sediments and sediment traps in the Eastern Tropical Pacific: implications for atmospheric CO2variations during the Pleistocene. Limnol. Oceanogr. 30, 699–712 (1995).

    ADS  Google Scholar 

  81. Malin, G., Turner, S. M., Liss, P. S. & Aiken. Sulfur—the plankton climate connection. J. Phycol. 28, 590–597 (1992).

    CAS  Google Scholar 

  82. Shibata, A., Kogure, K., Koike, I. & Ohwada, K. Formation of submicron colloidal particles from marine bacteria by viral infection. Mar. Ecol. Prog. Ser. 155, 303–307 (1997).

    ADS  Google Scholar 

  83. Gonzalez, J. M. & Suttle, C. A. Grazing by marine nanoflagellates on viruses and virus-sized particles-ingestion and digestion. Mar. Ecol. Prog. Ser. 94, 1–10 (1993).

    ADS  Google Scholar 

  84. Hill, R. W., White, B. A., Cottrell, M. T. & Dacey, J. W. H. Virus-mediated total release of dimethylsulfoniopropionate from marine phytoplankton: a potential climate process. Aquat. Microb. Ecol. 14, 1–6 (1998).

    Google Scholar 

  85. Malin, G., Wilson, W. H., Bratbak, G., Liss, P. S. & Mann, N. H. Elevated production of dimethylsulfide resulting from viral infection of cultures of Phaeocystis pouchetii. Limnol. Oceanogr. 43, 1389–1393 (1998).

    ADS  CAS  Google Scholar 

  86. Kiene, R. P. & Bates, T. S. Biological removal of dimethyl sulphide from sea water. Nature 345, 702–705 (1990).

    ADS  CAS  Google Scholar 

  87. Fuhrman, J. A. in Manual of Environmental Microbiology(eds Hurst, C. J., Knudsen, C. R., McInerney, M. J., Stetzenbach, L. D. & Walter, M. V.) 1–894 (American Society for Microbiology, Washington DC, (1997).

    Google Scholar 

  88. Levin, B. R., Steward, F. M. & Chao, L. Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage. Am. Nat. 111, 3 (1977).

    Google Scholar 

  89. Hennes, K. P., Suttle, C. A. & Chan, A. M. Fluorescently labeled virus probes show that natural virus populations can control the structure of marine microbial communities. Appl. Environ. Microbiol. 61, 3623–3627 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hutchinson, G. E. The paradox of the plankton. Am. Nat. 45, 137–145 (1961).

    Google Scholar 

  91. Siegel, D. A. Resource competition in a discrete environment: why are plankton distributions paradoxical? Limnol. Oceanogr. 43, 1133–1146 (1998).

    ADS  Google Scholar 

  92. Thingstad, T. F. & Lignell, R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13, 19–27 (1997).

    Google Scholar 

  93. Wommack, K. E., Ravel, J., Hill, R. T. & Colwell, R. R. Hybridization analysis of Chesapeake Bay virioplankton. Appl. Environ. Microbiol. 65, 241–250 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Bohannan, B. J. M. & Lenski, R. E. Effect of resource enrichment on a chemostat community of bacteria and bacteriophage. Ecology 78, 2303–2315 (1997).

    Google Scholar 

  95. Hollibaugh, J. T. & Azam, F. Microbial degradation of dissolved proteins in the seawater. Limnol. Oceanogr. 28, 1104–1116 (1983).

    ADS  CAS  Google Scholar 

  96. Jiang, S. C. & Paul, J. H. Occurrence by lysogenic bacteria in marine microbial communities as determined by prophage induction. Mar. Ecol. Prog. Ser. 142, 27–38 (1996).

    ADS  Google Scholar 

  97. Tapper, M. A. & Hicks, R. E. Temperate viruses and lysogeny in Lake Superior bacterioplankton. Limnol. Oceanogr. 43, 95–103 (1998).

    ADS  Google Scholar 

  98. Cochran, P. K. & Paul, J. H. Seasonal abundance of lysogenic bacteria in a subtropical estuary. Appl. Environ. Microbiol. 64, 2308–2312 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Jiang, S. C. & Paul, J. H. Significance of lysogeny in the marine-environment—studies with isolates and a model of lysogenic phage production. Microb. Ecol. 35, 235–243 (1998).

    CAS  PubMed  Google Scholar 

  100. Cochran, P. K., Kellogg, C. A. & Paul, J. H. Prophage induction of indigenous marine lysogenic bacteria by environmental pollutants. Mar. Ecol. Prog. Ser. 164, 124–133 (1998).

    ADS  Google Scholar 

  101. Wilcox, R. M. & Fuhrman, J. A. Bacterial viruses in coastal seawater: lytic rather than lysogenic production. Mar. Ecol. Prog. Ser. 114, 35–45 (1994).

    ADS  Google Scholar 

  102. Weinbauer, M. G. & Suttle, C. A. Potential significance of lysogeny to bacteriophage production and bacterial mortality in coastal waters of the Gulf-of-Mexico. Appl. Environ. Microbiol. 62, 4374–4380 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ripp, S., Ogunseitan, O. A. & Miller, R. V. Transduction of a freshwater microbial community by a new Pseudomonas aeruginosa generalized transducing phage, Utl. Mol. Ecol. 3, 121–126 (1994).

    CAS  PubMed  Google Scholar 

  104. Jiang, S. C. & Paul, J. H. Gene transfer by transduction in the marine environment. Appl. Environ. Microbiol. 64, 2780–2787 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sverdrup, H. U., Johnson, M. W. & Fleming, R. H. The Oceans(Prentice Hall, Englewood Cliffs, (1942).

    Google Scholar 

Download references

Acknowledgements

I thank several individuals who have discussed the broad array of virus-related processes with me over the years and shared unpublished data, including F. Azam, L. Proctor, G. Bratbak, J. Paul, C. Suttle, R. Noble, F. Thingstad, G. Steward and R. Kiene. D. Comeau, B. Bohannan and D. Bird provided useful comments on the manuscript. This work was supported by the NSF and a USC Sea Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jed A. Fuhrman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuhrman, J. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999). https://doi.org/10.1038/21119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/21119

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing