Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Remodeling of an acellular collagen graft into a physiologically responsive neovessel

Abstract

Surgical treatment of vascular disease has become common, creating the need for a readily available, small-diameter vascular graft. However, the use of synthetic materials is limited to grafts larger than 5–6 mm because of the frequency of occlusion observed with smaller-diameter prosthetics. An alternative to synthetic materials would be a biomaterial that could be used in the design of a tissue-engineered graft. We demonstrate that a small-diameter (4 mm) graft constructed from a collagen biomaterial derived from the submucosa of the small intestine and type I bovine collagen has the potential to integrate into the host tissue and provide a scaffold for remodeling into a functional blood vessel. The results obtained using a rabbit arterial bypass model have shown excellent hemostasis and patency. Furthermore, within three months after implantation, the collagen grafts were remodeled into cellularized vessels that exhibited physiological activity in response to vasoactive agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histological evaluation of explanted grafts.
Figure 2: Identification of smooth muscle cells in the explanted grafts.
Figure 3: Endothelialization of the graft lumen.
Figure 4: Vasomotor responsiveness of explanted grafts.

Similar content being viewed by others

References

  1. Report of a working party of the British Cardiac Society: coronary angioplasty in the United Kingdom. Br. Heart J. 66, 325–331 (1991).

  2. Heart and Stroke Facts: Statistical Supplement, American Heart Association. http://www.americanheart.org/statistics. (1996).

  3. Callow, A.D. in Biologic and synthetic vascular prosthesis. 11–26, (ed. Stanley, J.) (Grune and Stratton, New York; 1986).

    Google Scholar 

  4. Edwards, W.S., Holdefer, W.F. & Motashemi, M. The importance of proper caliber of lumen in femoral popliteal artery reconstruction. Surg. Gynecol. & Obstet. 122, 37–42 (1966).

    CAS  Google Scholar 

  5. Brewster, D.C. & Rutherford, R.B. Prosthetic Grafts. Vaxcular Surgury. (ed. W.B. Saunders) 492–521, (Philadelphia; 1995).

  6. Stephen, M., Loewenthal, J., Little, J.M., May, J. & Sheil, A.G.R. Autogenous veins and velour Dacron in femoropopliteal arterial bypass. Surgery 81, 314–318 (1977).

    CAS  PubMed  Google Scholar 

  7. O'Donnell, T.F. et al. Correlation of operative findings with angiographic and non-invasive hemodynamic factors associated with failure of PTFE grafts. J. Vasc. Surg. 1, 136–48 (1984).

    Article  Google Scholar 

  8. Gundry, S.R. & Behrendt, D.M. A comparison of fibrin glue, albumin and blood as agents to pretreat porous grafts. J. Surg. Res. 43, 75–77 (1987).

    Article  CAS  Google Scholar 

  9. Kottke-Marchant, K., Anderson, J.M., Umemura, Y. & Marchant, R.E. Effect of coating on the in vitro blood compatibility of Dacron arterial prostheses. Biomaterials 10, 14–17 (1989).

    Article  Google Scholar 

  10. Park, K.D. et al. Heparin immobilization onto segmented polyurethane urea surfaces. J. Biomed. Mater. Res. 22, 977–980 (1988).

    Article  CAS  Google Scholar 

  11. Zarge, J.L., Huang, P. & Greisler, H.P. in Principles of tissue engineering (eds Lanza, R., Langer, R., & Chick, W.) 349–364 (R.G. Landes Company, Georgetown, TX; 1997).

    Google Scholar 

  12. Herring, M.B., Gardner, A.L. & Glover, J. A single-staged technique for seeding vascular grafts with autogenous endothelium. Surgery 84, 498–502 (1987).

    Google Scholar 

  13. Williams, S.K., Jarrell, B.E. & Kleinert, L.B. Endothelial cell transplantation onto porcine arteriovenous grafts evaluated using a canine model. J. Invest. Surg. 7, 503–517 (1994).

    Article  CAS  Google Scholar 

  14. Pasic, M. et al. Superior late patency of small-diameter Dacron grafts seeded with omental microvascular cells: an experimental study. Ann. Thorac. Surg. 58, 677–682 (1994).

    Article  CAS  Google Scholar 

  15. Bowlin, G.L. & Rittgers, S.E. Electrostatic endothelial cell seeding technique for small diameter vascular prostheses: feasibility testing. Cell Transplant. 6, 623–629 (1997).

    CAS  PubMed  Google Scholar 

  16. Weinberg, C.B. & Bell, E. A blood vessel model constructed from collagen and cultured vascular cells. Science 231, 397–399 (1986).

    Article  CAS  Google Scholar 

  17. Matsuda, T. & Miwa, H. A hybrid vascular model biomimicking the hierarchic structure of arterial wall. J. Thorac. Cardiovasc. Surg. 110, 988–997 (1995).

    Article  CAS  Google Scholar 

  18. Ziegler, T., Robinson, K.A., Alexander, R.W. & Nerem, R.M. Co-culture of endothelial and smooth muscle cells in a flow environment: an improved culture model of the vascular wall? Cells Mater. 5, 115–124 (1995).

    Google Scholar 

  19. Tranquillo, R.T., Girton, T.S., Bromberek, B.A., Triebes, T.G. & Mooradian, D.L. Magnetically-oriented tissue-equivalent tubes. Biomaterials 17, 349–353 (1996).

    Article  CAS  Google Scholar 

  20. L'Heureux, N., Paquet, S., Germain, L., Labbe, R. & Auger, F.A. A completely biological tissue-engineered human blood vessel. FASEB J. 12, 47–56 (1998).

    Article  CAS  Google Scholar 

  21. Niklason, L.E. et al. Functional arteries grown in vitro. Science 284, 489–493 (1999).

    Article  CAS  Google Scholar 

  22. Lawler, M.R., Foster, J.H. & Scott, H.W. Evaluation of canine intestinal submucosa as a vascular substitute. Am. J. Surg. 122, 517–519 (1971).

    Article  Google Scholar 

  23. Egusa, S. Replacement of inferior vena cava and abdominal aorta with the autogenous segment of small intestine. Acta Med. 22, 153–165 (1968).

    CAS  Google Scholar 

  24. Matsumoto, T., Holmes, R.H. & Burdick, C.D. The fate of the inverted segment of small bowel used for the replacement of major veins. Surgery 60, 739–743 (1966).

    CAS  PubMed  Google Scholar 

  25. Badylak, S.F., Lantz, G.C., Coffey, A. & Geddes, L.A. Small intestinal submucosa as a large diameter vascular graft in the dog. J. Surg. Res. 47, 74–80 (1989).

    Article  CAS  Google Scholar 

  26. Lantz, G.C., Badylak, S.F., Coffey, A.C., Geddes, L.A. & Blevins, W.E. Small intestinal submucosa as a small-diameter arterial graft in the dog. J. Invest. Surg. 3, 217–227 (1990).

    Article  CAS  Google Scholar 

  27. Termin, P.L., Carr, R.M., O'Neil, K.D. & Connolly, R.J. Thrombogenicity of intestinal submucosa: results of canine ex vivo shunt and acute rabbit implant studies. AAMI Cardiovascular Science and Technology Conference Proceedings, Washington D.C.; (1993).

  28. Hardin-Young, J., Carr, R.M., Downing, G., Condon, K. & Termin, P.L. Modification of native collagen reduces antigenicity but preserves cell compatibility. Biotechnol. Bioeng. 49, 675–682 (1996).

    Article  CAS  Google Scholar 

  29. Kim, K.M., Herrera, G.A. & Battarbee, H.D. Role of glutaraldehyde in calcification of porcine aortic valve fibroblasts. Am. J. Pathol. 154, 671–675 (1999).

    Article  Google Scholar 

  30. Abraham, G.A., Carr, R.M., Kemp, P.D. & Baker, L. Chemical Cleaning of Biological Material. PCT publication no. WO 98/49969 (1998).

  31. Falanga, V. et al. Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Arch. Dermatol. 134, 293–299 (1998).

    Article  CAS  Google Scholar 

  32. Davies, M., Ramkumar, V., Gettys, T.W. & Hagen, P.-O. The expression and function of G-proteins in experimental intimal hyperplasia. J. Clin. Invest. 94, 1680–1689 (1994).

    Article  CAS  Google Scholar 

  33. Davies, PF . Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560 (1995).

    Article  CAS  Google Scholar 

  34. Mills, I. & Sumpio, B.E. in Tissue engineering of prosthetic vascular grafts (eds Zilla P. & Griesler, H.P.) 425–438, (R.G. Landes Co, Austin, TX; 1999).

    Google Scholar 

  35. Levesque, M.J. & Nerem, R.M. The study of rheological effects on vascular endothelial cells in culture. Biorheology 26, 345–357 (1989).

    Article  CAS  Google Scholar 

  36. Davids, L., Dower T. & Zilla, P. in Tissue engineering of prosthetic vascular grafts (eds Zilla P. & Griesler, H.P.). 3–45, (R.G. Landes Co, Austin, TX; 1999).

    Google Scholar 

  37. O' Malley, M.K. et al. Contraction and sensitivity to norephinephrine after endothelial denudation is inhibited by prazosin. Surgery 99, 36–43 (1986).

    CAS  Google Scholar 

  38. Kemp, P.D., Carr, R.M. & Maresh, J.G. Collagen constructs. US patent no. 5,256,418 (1993).

  39. Cramer, R., Moore, R. & Amplatz, K. Reduction of surgical complication rate by the use of a hypothrombogenic catheter coating. Radiology 109, 585–588 (1973).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Jeffrey Crews, Rachel Brothers, Kim Medeiros, and Dan O'Reilly of Organogenesis for assistance with the histology, Dr. Joseph Laning for immunological analyses and Dr. Einar Svendsen of the GADE Institute, University of Bergen, Bergen, Norway, for the scanning electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huynh, T., Abraham, G., Murray, J. et al. Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nat Biotechnol 17, 1083–1086 (1999). https://doi.org/10.1038/15062

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15062

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing