Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia

Abstract

Familial platelet disorder with predisposition to acute myelogenous leukaemia (FPD/AML, MIM 601399) is an autosomal dominant disorder characterized by qualitative and quantitative platelet defects, and propensity to develop acute myelogenous leukaemia (AML). Informative recombination events in 6 FPD/AML pedigrees with evidence of linkage to markers on chromosome 21q identified an 880-kb interval containing the disease gene. Mutational analysis of regional candidate genes showed nonsense mutations or intragenic deletion of one allele of the haematopoietic transcription factor CBFA2 (formerly AML1) that co-segregated with the disease in four FPD/AML pedigrees. We identified heterozygous CBFA2 missense mutations that co-segregated with the disease in the remaining two FPD/AML pedigrees at phylogenetically conserved amino acids R166 and R201, respectively. Analysis of bone marrow or peripheral blood cells from affected FPD/AML individuals showed a decrement in megakaryocyte colony formation, demonstrating that CBFA2 dosage affects megakaryopoiesis. Our findings support a model for FPD/AML in which haploinsufficiency of CBFA2 causes an autosomal dominant congenital platelet defect and predisposes to the acquisition of additional mutations that cause leukaemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FPD/AML pedigrees.
Figure 2: The FPD/AML genomic region and informative recombination events in CBFA2.
Figure 3: CBFA2 mutations in FPD/AML pedigrees 2 and 3.
Figure 4: Summary of mutations in FPD/AML pedigrees 1–6.
Figure 5: Ribbon representation of the backbone of the NMR solution structure of the CBFA2 Runt domain.
Figure 6: Genotype and FISH analysis of FPD/AML pedigree 1.
Figure 7: RT-PCR of platelet RNA.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Weinberg, R.A. Oncogenes, antioncogenes, and the molecular basis of multistep carcinogenesis. Cancer Res. 49, 3713–3721 (1989).

    CAS  PubMed  Google Scholar 

  2. Knudson, A.G. Hereditary cancer: theme and variations. J. Clin. Oncol. 15, 3280–3287 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Rowley, J.D. Seminars from the University of Minnesota. Chromosome translocations: dangerous liaisons. J. Lab. Clin. Med. 132, 244– 250 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Rowley, J.D. The critical role of chromosome translocations in human leukemias. Annu. Rev. Genet. 32, 495–519 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. de The, H., Chomienne, C., Lanotte, M., Degos, L. & Dejean, A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor α gene to a novel transcribed locus. Nature 347, 558 –561 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Miyoshi, H. et al. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J. 12, 2715–2721 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Erickson, P. et al. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 80, 1825–1831 (1992).

    CAS  PubMed  Google Scholar 

  8. Liu, P. et al. Fusion between transcription factor CBFB/PEBP2B and a myosin heavy chain in acute myeloid leukemia. Science 261, 1041–1044 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Morrissey, J. et al. A serine/proline-rich protein is fused to HRX in t(4;11) acute leukemias. Blood 81, 1124– 1131 (1993).

    CAS  PubMed  Google Scholar 

  10. Nakamura, T. et al. Genes on chromosomes 4, 9, and 19 involved in 11q23 abnormalities in acute leukemia share sequence homology and/or common motifs. Proc. Natl Acad. Sci. USA 90, 4631– 4635 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thirman, M.J. et al. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N. Engl. J. Med. 329, 909–914 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  12. Fearon, E., Burke, P., Schiffer, C., Zehnbauer, B. & Vogelstein, B. Differentiation of leukemia cells to polymorphonuclear leukocytes in patients with acute nonlymphocytic leukemia. N. Engl. J. Med. 315, 15–24 ( 1986).

    Article  CAS  PubMed  Google Scholar 

  13. Gale, R., Wheadon, H., Boulos, P. & Linch, D. Tissue specificity of X-chromosome inactivation patterns. Blood 83, 2899–2905 (1994).

    CAS  PubMed  Google Scholar 

  14. Busque, L. & Gilliland D.G. Clonal evolution in acute myeloid leukemia. Blood 82, 337– 342 (1993).

    CAS  PubMed  Google Scholar 

  15. Gerrard, J.M. et al. Inherited platelet-storage pool deficiency associated with a high incidence of acute myeloid leukemia. Br. J. Haematol. 79, 246–255 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Dowton, S.B., Beardsley, D., Jamison, D., Blattner, S. & Li, F.P. Studies of a familial platelet disorder. Blood 65, 557–563 (1985).

    CAS  PubMed  Google Scholar 

  17. Ho, C.Y. et al. Linkage of a familial platelet disorder with a propensity to develop myeloid malignancies to human chromosome 21q22.1–22.2. Blood 87, 5218–5224 ( 1996).

    CAS  PubMed  Google Scholar 

  18. Arepally, G. et al. Evidence for genetic homogeneity in a familial platelet disorder with predisposition to acute myelogenous leukemia. Blood 92, 2600–2602 (1998).

    CAS  PubMed  Google Scholar 

  19. Horwitz, M. et al. Genetic heterogeneity in familial acute myelogenous leukemia: evidence for a second locus at chromosome 16q21–23.2. Am. J. Hum. Genet. 61, 873–881 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Speck, N.A. et al. Core-binding factor: a central player in hematopoiesis and leukemia. Cancer Res. 59, 1789s– 1793s (1999).

    CAS  PubMed  Google Scholar 

  21. Berardi, M.J. et al. The Ig fold of the core binding factor alpha runt domain is a member of a family of structurally and functionally related Ig fold DNA binding domains. Structure (in press).

  22. Legare, R.D. et al. CBFA2, frequently rearranged in leukemia, is not responsible for a familial leukemia syndrome. Leukemia 11, 2111–2119 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Golub, T.R. et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 92, 4917–4921 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Romana, S.P. et al. The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 85, 3662– 3670 (1995).

    CAS  PubMed  Google Scholar 

  25. Romana, S.P. et al. High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood 86, 4263– 4269 (1995).

    CAS  PubMed  Google Scholar 

  26. Hiebert, S.W. et al. The t(12;21) converts AML-1B from an activator to a repressor of transcription. Mol. Cell. Biol. 16, 1349 –1355 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Levanon, D. et al. A large variety of alternatively spliced and differentially expressed mRNAs are encoded by the human acute myeloid leukemia gene AML1. DNA Cell Biol. 15, 175– 185 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Bae, S.C. et al. PEBP2αB/mouse AML1 consists of multiple isoforms that possess differential transactivation potentials. Mol. Cell. Biol. 14, 3242–3252 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meyers, S., Lenny, N. & Hiebert, S.W. The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. Mol. Cell. Biol. 15, 1974–1982 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tanaka, T. et al. An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activaiton antagonistically by two alternative spliced forms. EMBO J. 14, 341–350 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yergeau, D.A. et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nature Genet. 15, 303–306 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Castilla, L.H. et al. Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYH11. Cell 87, 687–696 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  33. Okuda, T. et al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 91, 3134 –3143 (1998).

    CAS  PubMed  Google Scholar 

  34. Osato, M. et al. Biallelic and heterozygous point mutations in the Runt domain of the AML1/PEBP2a gene associated with myeloblastic leukemias. Blood 93, 1817–1824 ( 1999).

    CAS  PubMed  Google Scholar 

  35. Kagoshima, H., Akamatsu, Y., Ito, Y. & Shigeasada, K. Functional dissection of the α and β subunits of transcription factor PEBP2 and the redox susceptibility of its DNA binding activity. J. Biol. Chem. 271, 33074–33082 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, Q. et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl Acad. Sci. USA 93, 3444– 3449 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G. & Downing, J.R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–330 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Akamatsu, Y. et al. A simple screening for mutant DNA binding proteins: application to murine transcription factor PEBP2a subunit, a founding member of the Runt domain protein family. Gene 185, 111– 117 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Crute, B.E., Lewis, A.F., Wu, Z., Bushweller, J. & Speck, N.A. Biochemical and biophysical properties of the core-binding factor a2 (AML1) DNA-binding domain. J. Biol. Chem. 271, 26251–26260 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Shivdasani, R.A. et al. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 81, 695–704 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Shivdasani, R.A. et al. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J. 16, 3965–3973 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tevosian, S.G. et al. FOG-2: A novel Gata-family cofactor related to multitype zinc-finger proteins Friend of GATA-1 and U-shaped. Proc. Natl Acad. Sci. USA 96, 950–955 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Loh, M.L. et al. Incidence of TEL/AML1 fusion in children with relapsed acute lymphoblastic leukemia. Blood 92, 4792– 4797 (1998).

    CAS  PubMed  Google Scholar 

  44. Rubnitz, J.E. et al. Low frequency of TEL-AML1 in relapsed acute lymphoblastic leukemia supports a favorable prognosis for this genetic subgroup. Leukemia 13, 19–21 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  45. Fero, M.L., Randel, E, Gurley, K.E., Robert, J.M. & Kemp, C. The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396, 177– 180 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Golub, T., Barker, G., Lovett, M. & Gilliland, D.G. Fusion of PDGF Receptor β to a novel ETS-like gene, TEL, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77, 307–316 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Kowalska, M.A. et al. Platelets and megakaryocytes express the HIV co-receptor CXCR4 on their surface: response to stromal-derived factor-1 (SDF-1). Br. J. Haematol. 1104, 220–229 (1999).

    Article  Google Scholar 

  48. Ratajczak, M.Z. et al. Effect of hepatocyte growth factor (HGF) on early human hematopoietic cell development. Br. J. Haematol. 99, 228 –286 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Ratajczak, M.Z., Ratajczak, J., Machalinski, B. & Gewirtz, A.M. In vitro and in vivo evidence that ex vivo cytokine priming of donor marrow cells may ameliorate post-transplant thrombocytopenia. Blood 91, 353–359 ( 1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank patients, families and physicians for participation; S.C. Davies, J. Cogswell, T. Keating, C. Zerbini, K. Blanchard, R. Cote, P. Dunphy, K. Ferguson, B. Himelstein and A. Shapiro for clinical care of FPD/AML family members and for obtaining patient samples; D. Porter for evaluating the proband in pedigree 1; R. Lifton, T. Golub, J. Gusella and L. Kunkel for critical review of this manuscript and discussions, M. Ryan for administrative and secretarial assistance; S. Ontiveros and E. Motte for technical assistance; and J. Cheng for providing access to cDNA clones that localize to the FDP/AML region. This work was supported in part by American Cancer Society grant RPG-93-007-05-DHP, NIH RO1 CA81932 and the MarJo Foundation (S.H., M.S., W.-J.S. and D.G.G); NIH RO1 CA78545 (J.M.M.); NIH R29 AI39536, NIH K02 AI10481 and NIH AI42097 (J.H.B.); NIH HL40387 (M.P.), NIH R01CA58343 (N.A.S.). F.P.L. is Harry and Elsa Giles American Cancer Society Professor of Clinical Research and is supported in part by the Starr Foundation. L.B. and D.C.R are scholars of the FRSQ. D.G.G. is a Stephen Birnbaum Scholar of the Leukaemia Society of America and an Associate Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Gary Gilliland.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, WJ., Sullivan, M., Legare, R. et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 23, 166–175 (1999). https://doi.org/10.1038/13793

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13793

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing