Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Antibody recognition imaging by force microscopy

Abstract

We have developed a method that combines dynamic force microscopy with the simultaneous molecular recognition of an antigen by an antibody, during imaging. A magnetically oscillated atomic force microscopy tip carrying a tethered antibody was scanned over a surface to which lysozyme was bound. By oscillating the probe at an amplitude of only a few nanometers, the antibody was kept in close proximity to the surface, allowing fast and efficient antigen recognition and gentle interaction between tip and sample. Antigenic sites were evident from reduction of the oscillation amplitude, as a result of antibody–antigen recognition during the lateral scan. Lysozyme molecules bound to the surface were recognized by the antibody on the scanning tip with a few nanometers lateral resolution. In principle, any ligand can be tethered to the tip; thus, this technique could potentially be used for nanometer-scale epitope mapping of biomolecules and localizing receptor sites during biological processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: (A) Multilayer topography image. Image size was 500 nm.
Figure 2: (A) AFM tip–lysozyme interaction during topography imaging.
Figure 3: (A) Time course of antibody state.

Similar content being viewed by others

References

  1. Binnig, G., Quate, C.F. & Gerber, Ch. Atomic force microscope. Phys. Rev. Lett . 56, 930–933 ( 1986).

    Article  CAS  Google Scholar 

  2. Drake, B. et al. Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243, 1586–1589 (1989).

    Article  CAS  Google Scholar 

  3. Shao, Z. & Yang, J. Progress in high resolution atomic force microscopy. Q. Rev. Biophys. 28, 195 –251 (1995).

    Article  CAS  Google Scholar 

  4. Müller, D.J., Schabert, F.A., Büldt, G. & Engel. A. Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. Biophys. J. 68, 1681–1686 (1995).

    Article  Google Scholar 

  5. Lee, G.U., Kidwell, D.A. & Colton, R.J. Sensing discrete streptavidin-biotin interactions with atomic force microscopy. Langmuir 10, 354–357 (1994).

    Article  CAS  Google Scholar 

  6. Florin, E.L., Moy, V.T. & Gaub, H.E. Adhesion forces between individual ligand receptor pairs. Science 264, 415–417 (1994).

    Article  CAS  Google Scholar 

  7. Boland, T. & Ratner, B.D. Direct measurement of hydrogen bonding in DNA nucleotide bases by atomic force microscopy. Proc. Natl. Acad. Sci. USA 92, 5297–5301 (1995).

    Article  CAS  Google Scholar 

  8. Hinterdorfer, P., Baumgartner, W., Gruber, H.J., Schilcher, K. & Schindler, H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. USA 93, 3477– 3481 (1996).

    Article  CAS  Google Scholar 

  9. Dammer, U. et al. Specific antigen/antibody interactions measured by force microscopy. Biophys. J. 70, 2437–2441 (1996).

    Article  CAS  Google Scholar 

  10. Allen, S. et al. Spatial mapping of specific molecular recognition sites by atomic force microscopy. Biochemistry 36, 7457– 7463 (1997).

    Article  CAS  Google Scholar 

  11. Ros, R. et al. Antigen binding forces of individually addressed single-chain Fv antibody molecules. Proc. Natl. Acad. Sci. USA 95, 7402–7405 (1998).

    Article  CAS  Google Scholar 

  12. Wong, S.S., Joselevich, E., Woolley, A.T., Cheung, C.L. & Lieber, C.M. Covalently functionalyzed nanotubes as nanometre-sized probes in chemistry and biology. Nature 394, 52–55 (1998).

    Article  CAS  Google Scholar 

  13. Hinterdorfer, P., Schilcher, K., Baumgartner, W., Gruber, H.J. & Schindler, H.A. Mechanistic study of the dissociation of individual antibody–antigen pairs by atomic force microscopy. Nanobiology 4, 39–50 ( 1998).

    Google Scholar 

  14. Willemsen, O.H.E. et al. Simultaneous height and adhesion imaging of antibody–antigen interactions by atomic force microscopy. Biophys. J. 57, 2220–2228 (1998).

    Article  Google Scholar 

  15. Fritz, J., Katopidis, A.G., Kolbinger, F. & Anselmetti, D. Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc. Natl. Acad. Sci. USA 95, 12283–12288 (1998).

    Article  CAS  Google Scholar 

  16. Frisbie, C.D., Rosznyai, F., Noy, A., Wrighton, M.S. & Lieber, C.M. Functional group imaging by chemical force microscopy. Science 256, 2071–2074 (1994).

    Article  Google Scholar 

  17. Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541– 1555 (1997).

    Article  CAS  Google Scholar 

  18. Ludwig, M., Dettmann, W. & Gaub, H.E. Atomic force microscopy imaging contrast based on molecular recognition. Biophys. J. 72, 445 –448 (1997).

    Article  CAS  Google Scholar 

  19. Han, W., Lindsay, S.M. & Jing, T. A magnetically driven oscillating probe microscope for operation in liquid. Appl. Phys. Lett. 69, 1–3 (1996).

    Article  Google Scholar 

  20. Han, W., Lindsay, S.M., Dlakic, M. & Harrington, R.E. Kinked DNA. Nature 386, 563 ( 1997).

    Article  CAS  Google Scholar 

  21. Han, W., Dlakic, M., Zhu, Y.J., Lindsay, S.M. & Harrington, R.E. Strained DNA is kinked by low concentrations of Zn2+. Proc. Natl. Acad. Sci. USA 94, 10565–10570 (1997).

    Article  CAS  Google Scholar 

  22. Radmacher, M., Fritz, M., Hansma, H.G. & Hansma, P.K. Direct observation of enzyme activity with the atomic force microscope. Science 265, 1577–1579 (1994).

    Article  CAS  Google Scholar 

  23. Phillips, D.C. The hen egg white lysozyme molecule. Proc. Natl. Acad. Sci. USA 57, 484–495 ( 1967).

    Article  CAS  Google Scholar 

  24. Haselgrübler, Th., Amerstorfer, A., Schindler, H. & Gruber, H.J. Synthesis and applications of a new poly(ethylene glycol) derivative for the crosslinking of amines with thiols. Bioconjugate Chem. 6, 242–248 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs. Hermann J. Gruber and Werner Baumgartner for enlightening discussions. This work was supported by the Austrian Science Foundation projects P12801/2-MED (A.R., D.B., H.S., and P.H.), the Austrian Ministry of Science project GZ200.026/2-Pr/4/98 (A.R., D.B., H.S., and P.H.), the EC-BIOTECHNOLOGY program project ERBBIO4CT960592 (A.R., D.B., H.S., and P.H.), the National Institutes of Health (S.J.S.-G.), and the National Science Foundation project BIR 9513233 (S.M.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hinterdorfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raab, A., Han, W., Badt, D. et al. Antibody recognition imaging by force microscopy. Nat Biotechnol 17, 901–905 (1999). https://doi.org/10.1038/12898

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12898

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing