Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

HIV-1 entry inhibitors: Evading the issue

Abstract

HIV-1 entry into cells is an attractive target for new antiviral agents. But will inhibitors aimed at the CCR5 co-receptor force HIV-1 to evolve more virulent forms?

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HIV should be hit coming, going, and at points in between.

References

  1. Finzi, D. et al. Latent infection of CD4+ T-cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nature Med. 5, 512–517 (1999).

    Article  CAS  Google Scholar 

  2. Kilby, J.M. et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nature Med. 4, 1302–1307 (1998).

    Article  CAS  Google Scholar 

  3. Berger, E.A. HIV entry and tropism: the chemokine receptor connection. AIDS 11, S3–16 (1997).

    PubMed  Google Scholar 

  4. Berger, E.A. et al. A new classification for HIV-1. Nature 391, (1999).

  5. Richman, D.D. & Bozzette, S.A. The impact of the syncytium-inducing phenotype of human immunodeficiency virus on disease progression. J. Infect. Dis. 169, 968–974 (1994).

    Article  CAS  Google Scholar 

  6. Kimata, J.T. et al. Emerging cytopathic and antigenic simian immunodeficiency virus variants influence AIDS progression. Nature Med. 5, 535–541 (1999).

    Article  CAS  Google Scholar 

  7. Simmons, G. et al. Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. J. Virol. 70, 8355– 8360 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Choe, H. et al. The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85, 1135–1148 (1996).

    Article  CAS  Google Scholar 

  9. Perelson, A.S. et al. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586 (1996).

    Article  CAS  Google Scholar 

  10. Cornelissen, M. et al. Syncytium-inducing (SI) phenotype suppression at seroconversion after intramuscular inoculation of a non-syncytium-inducing/SI phenotypically mixed human immunodeficiency virus population. J. Virol. 69, 1810–1818 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lathey, J.L., Pratt, R.D. & Spector, S.A. Appearance of autologous neutralizing antibody correlates with reduction in virus load and phenotype switch during primary infection with human immunodeficiency virus type 1. J. Infect. Dis. 175, 231–232 (1997).

    Article  CAS  Google Scholar 

  12. Trkola, A. et al. Neutralization sensitivity of human immunodeficiency virus type 1 primary isolates to antibodies and CD4-based reagents is independent of coreceptor usage. J. Virol. 72, 1876– 1885 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bleul, C.C. et al. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc. Natl. Acad. Sci. USA 94, 1925–1930 (1997).

    Article  CAS  Google Scholar 

  14. Grivel, J. & Margolis, L.B. CCR5- and CXCR4-tropic HIV-1 are equally cytopathic for their T-cell targets in human lymphoid tissue. Nature Med. 3, 344–346 (1999).

    Article  Google Scholar 

  15. Dean, M. et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273, 1856–1862 (1996).

    Article  CAS  Google Scholar 

  16. Michael, N.L. et al. Exclusive and persistent use of the entry coreceptor CXCR4 by human immunodeficiency virus type 1 from a subject homozygous for CCR5 delta 32. J. Virol. 72, 6040– 6047 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Y. & Moore, J.P. Will multiple coreceptors need to be targeted by inhibitors of human immunodeficiency virus type 1 entry? J. Virol. 73, 3443–3448 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Michael, N.L. et al. The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nature Med. 3, 338–340 (1997).

    Article  CAS  Google Scholar 

  19. Wu, L. et al. CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J. Exp. Med. 185, 1681–1691 (1997).

    Article  CAS  Google Scholar 

  20. Mosier, D.E. et al. Highly potent RANTES analogues either prevent CCR5-using human immunodeficiency virus type 1 infection in vivo or rapidly select for CXCR4-using variants. J. Virol. 73, 3544–3550 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gordon, C.J. et al. Enhancement of human immunodeficiency virus type1 infection by the CC-chemokine RANTES is independent of the mechanism of virus-cell fusion., J. Virol. 73, 684–694 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Donzella, G.A. et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nature Med. 4, 72– 77 (1998).

    Article  CAS  Google Scholar 

  23. Baba, M. et al. A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc. Natl. Acad. Sci. USA 96, 5698–5703 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michael, N., Moore, J. HIV-1 entry inhibitors: Evading the issue. Nat Med 5, 740–742 (1999). https://doi.org/10.1038/10462

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/10462

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing