Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Transcriptional activation is a key function encoded by MLL fusion partners

Abstract

Chromosomal translocations that fuse the mixed lineage leukemia gene (MLL) to a variety of unrelated partner genes are frequent in pediatric leukemias. The novel combination of genetic material leads to the production of active oncoproteins that depend on the contributions of both constituents. In a search for a common function amongst the diverse group of MLL fusion partners we constructed artificial fusions joining MLL with generic transactivator and repressor domains (acidic blob, GAL4 transactivator domain, Herpes simplex VP16 activation domain, KRAB repressor domain). Of all constructs tested, only MLL-VP16 was able to transform primary bone marrow cells and to induce a block of early myeloid differentiation like an authentic MLL fusion. Interestingly, the transformation capability of the artificial MLL fusions was correlated with the transcriptional potential of the resulting chimeric protein but it was not related to the strength of the isolated transactivation domain that was joined to MLL. These results prove for the first time that a general biological function – transactivation – might be the common denominator of many MLL fusion partners.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Dimartino JF, Cleary ML . MLL rearrangements in haematological malignancies: lessons from clinical and biological studies. Br J Haematol 1999; 106: 614–626.

    Article  CAS  PubMed  Google Scholar 

  2. Ayton PM, Cleary ML . Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001; 20: 5695–5707.

    Article  CAS  PubMed  Google Scholar 

  3. Huret JL, Dessen P, Bernheim A . An atlas of chromosomes in hematological malignancies. Example: 11q23 and MLL partners. Leukemia 2001; 15: 987–989.

    Article  CAS  PubMed  Google Scholar 

  4. Djabali M, Selleri L, Parry P, Bower M, Young BD, Evans GA . A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nat Genet 1992; 2: 113–118.

    Article  CAS  PubMed  Google Scholar 

  5. Gu Y, Nakamura T, Alder H, Prasad R, Canaani O, Cimino G, Croce CM, Canaani E . The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 1992; 71: 701–708.

    Article  CAS  PubMed  Google Scholar 

  6. Tkachuk DC, Kohler S, Cleary ML . Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 1992; 71: 691–700.

    Article  CAS  PubMed  Google Scholar 

  7. Ziemin-van der Poel S, McCabe NR, Gill HJ, Espinosa R III, Patel Y, Harden A, Rubinelli P, Smith SD, LeBeau MM, Rowley JD . Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci USA 1991; 88: 10735–10739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van Lohuizen M . The trithorax-group and polycomb-group chromatin modifiers: implications for disease. Curr Opin Genet Dev 1999; 9: 355–361.

    Article  CAS  PubMed  Google Scholar 

  9. Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ . Altered Hox expression and segmental identity in Mll-mutant mice. Nature 1995; 378: 505–508.

    Article  CAS  PubMed  Google Scholar 

  10. Yagi H, Deguchi K, Aono A, Tani Y, Kishimoto T, Komori T . Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice. Blood 1998; 92: 108–117.

    CAS  PubMed  Google Scholar 

  11. Hess JL, Yu BD, Li B, Hanson R, Korsmeyer SJ . Defects in yolk sac hematopoiesis in Mll-null embryos. Blood 1997; 90: 1799–1806.

    CAS  PubMed  Google Scholar 

  12. Corral J, Lavenir I, Impey H, Warren AJ, Forster A, Larson TA, Bell S, McKenzie AN, King G, Rabbitts TH . An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 1996; 85: 853–861.

    Article  CAS  PubMed  Google Scholar 

  13. Dobson CL, Warren AJ, Pannell R, Forster A, Lavenir I, Corral J, Smith AJ, Rabbitts TH . The Mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. EMBO J 1999; 18: 3564–3574.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dobson CL, Warren AJ, Pannell R, Forster A, Rabbitts TH . Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene. EMBO J 2000; 19: 843–851.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lavau C, Du C, Thirman M, Zeleznik-Le N . Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO J 2000; 19: 4655–4664.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Luo RT, Lavau C, Du C, Simone F, Polak PE, Kawamata S, Thirman MJ . The elongation domain of ELL is dispensable but its ELL-associated factor 1 interaction domain is essential for MLL-ELL-induced leukemogenesis. Mol Cell Biol 2001; 21: 5678–5687.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Slany RK, Lavau C, Cleary ML . The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX. Mol Cell Biol 1998; 18: 122–129.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Prasad R, Yano T, Sorio C, Nakamura T, Rallapalli R, Gu Y, Leshkowitz D, Croce CM, Canaani E . Domains with transcriptional regulatory activity within the ALL1 and AF4 proteins involved in acute leukemia. Proc Natl Acad Sci USA 1995; 92: 12160–12164.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. DiMartino JF, Miller T, Ayton PM, Landewe T, Hess JL, Cleary ML, Shilatifard A . A carboxy-terminal domain of ELL is required and sufficient for immortalization of myeloid progenitors by MLL-ELL. Blood 2000; 96: 3887–3893.

    CAS  PubMed  Google Scholar 

  20. Simone F, Polak PE, Kaberlein JJ, Luo RT, Levitan DA, Thirman MJ . EAF1, a novel ELL-associated factor that is delocalized by expression of the MLL-ELL fusion protein. Blood 2001; 98: 201–209.

    Article  CAS  PubMed  Google Scholar 

  21. Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M, Ohki M, Hayashi Y . Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood 1997; 90: 4699–4704.

    CAS  PubMed  Google Scholar 

  22. Sobulo OM, Borrow J, Tomek R, Reshmi S, Harden A, Schlegelberger B, Housman D, Doggett NA, Rowley JD, Zeleznik-Le NJ . MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc Natl Acad Sci USA 1997; 94: 8732–8737.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hawley RG, Lieu FH, Fong AZ, Hawley TS . Versatile retroviral vectors for potential use in gene therapy. Gene Ther 1994; 1: 136–138.

    CAS  PubMed  Google Scholar 

  24. Sadowski I, Ptashne M . A vector for expressing GAL4(1–147) fusions in mammalian cells. Nucleic Acids Res 1989; 17: 7539.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Butler LH, Slany R, Cui X, Cleary ML, Mason DY . The HRX proto-oncogene product is widely expressed in human tissues and localizes to nuclear structures. Blood 1997; 89: 3361–3370.

    CAS  PubMed  Google Scholar 

  26. Lavau C, Szilvassy SJ, Slany R, Cleary ML . Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J 1997; 16: 4226–4237.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. So CW, Cleary ML . MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function. Mol Cell Biol 2002; 22: 6542–6552.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Schreiner S, Birke M, Garcia-Cuellar MP, Zilles O, Greil J, Slany RK . MLL-ENL causes a reversible and myc-dependent block of myelomonocytic cell differentiation. Cancer Res 2001; 61: 6480–6486.

    CAS  PubMed  Google Scholar 

  29. Lavau C, Luo RT, Du C, Thirman MJ . Retrovirus-mediated gene transfer of MLL-ELL transforms primary myeloid progenitors and causes acute myeloid leukemias in mice. Proc Natl Acad Sci USA 2000; 97: 10984–10989.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Birke M, Schreiner S, Garcia-Cuellar MP, Mahr K, Titgemeyer F, Slany RK . The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation. Nucleic Acids Res 2002; 30: 958–965.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Schreiner SA, Garcia-Cuellar MP, Fey GH, Slany RK . The leukemogenic fusion of MLL with ENL creates a novel transcriptional transactivator. Leukemia 1999; 13: 1525–1533.

    Article  CAS  PubMed  Google Scholar 

  32. Garcia-Cuellar MP, Zilles O, Schreiner SA, Birke M, Winkler TH, Slany RK . The ENL moiety of the childhood leukemia-associated MLL-ENL oncoprotein recruits human Polycomb 3. Oncogene 2001; 20: 411–419.

    Article  CAS  PubMed  Google Scholar 

  33. Hemenway CS, de Erkenez AC, Gould GC . The polycomb protein MPc3 interacts with AF9, an MLL fusion partner in t(9;11)(p22;q23) acute leukemias. Oncogene 2001; 20: 3798–3805.

    Article  CAS  PubMed  Google Scholar 

  34. Garcia-Cuellar MP, Schreiner SA, Birke M, Hamacher M, Fey GH, Slany RK . ENL, the MLL fusion partner in t(11;19), binds to the c-Abl interactor protein 1 (ABI1) that is fused to MLL in t(10;11). Oncogene 2000; 19: 1744–1751.

    Article  CAS  PubMed  Google Scholar 

  35. Debernardi S, Bassini A, Jones LK, Chaplin T, Linder B, de Bruijn DR, Meese E, Young BD . The MLL fusion partner AF10 binds GAS41, a protein that interacts with the human SWI/SNF complex. Blood 2002; 99: 275–281.

    Article  PubMed  Google Scholar 

  36. Brock HW, van Lohuizen M . The Polycomb group-no longer an exclusive club?. Curr Opin Genet Dev 2001; 11: 175–181.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Frank Rauscher III for the gift of the KRAB repressor plasmid. The authors wish to thank Renate Zimmermann for technical assistance and Georg Fey for continuous support. This work was supported by grant SFB466/C7 and partially by grants SFB473/B10 and SL27/4–1 from the DFG. RKS is a recipient of a Ria Freifrau-von-Fritsch Stiftung career development award.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeisig, B., Schreiner, S., García-Cuéllar, MP. et al. Transcriptional activation is a key function encoded by MLL fusion partners. Leukemia 17, 359–365 (2003). https://doi.org/10.1038/sj.leu.2402804

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402804

Keywords

This article is cited by

Search

Quick links