Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Gene Fusion Proteins

The amino terminus targets the mixed lineage leukemia (MLL) protein to the nucleolus, nuclear matrix and mitotic chromosomal scaffolds

Abstract

The mixed-lineage leukemia gene (MLL) is associated with more than 25 chromosomal translocations involving band 11q23 in diverse subtypes of human acute leukemia. Conditional expression of a 50 kDa amino terminal fragment spanning the AT hook motifs of MLL (MLL3AT) causes cell cycle arrest, upregulation of p21Cip1 and p27Kip1 and partial monocytic differentiation of the monoblastic U937 cell line, suggesting a major role for MLL3AT in MLL-AF9-induced myelomonocytic differentiation. In this study, we analyzed the subcellular localization of conditionally expressed MLL3AT in both U937 and HeLa cell lines. Immunofluorescence staining, confocal laser scanning microscopy and immunoelectron microscopy indicated that MLL3AT, like endogenous MLL, localized in the nucleoplasm in a punctate pattern of distribution, including regions attached to the nuclear envelope and the periphery of the nucleolus. We found that MLL3AT and endogenous MLL were present in interphase nuclear matrices and colocalized with topoisomerase II to mitotic chromosomal scaffolds. Nucleoplasm and nucleolar localization was observed even for MLL-AF9 and MLL-AF4 conditionally expressed chimeric proteins, suggesting a common target conferred by the amino terminus of MLL to many if not all the chimeric MLL proteins. The nuclear matrix/scaffold association suggests a role for the amino terminus of MLL in the modulation of chromatin structure, leading to epigenetic effects on the maintenance of gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ziemin-van der Poel S, McCabe NR, Gill HJ, Espinosa R III, Patel Y, Harden A, Rubinelli P, Smith SD, LeBeau MM, Rowley JD, Diaz MO . Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias Proc Natl Acad Sci USA 1991 88: 10735–10739

    Article  CAS  Google Scholar 

  2. Raimondi SC, Peiper SC, Kitchingman G, Behm FG, Williams DL, Hancock ML, Mirro J Jr . Childhood acute lymphoblastic leukemia with chromosomal breakpoints at 11q23 Blood 1989 73: 1627–1634

    CAS  PubMed  Google Scholar 

  3. Raimondi SC, Kalwinsky DK, Hayashi Y, Behm FG, Mirro JJr, Williams DL . Cytogenetics of childhood acute nonlymphocytic leukemia Cancer Genet Cytogenet 1989 40: 13–27

    Article  CAS  Google Scholar 

  4. DeVore R, Whitlock J, Hainsworth JD, Johnson DH . Therapy-related acute nonlymphocytic leukemia with monocytic features and rearrangement of chromosome 11q Ann Intern Med 1989 110: 740–742

    Article  CAS  Google Scholar 

  5. Pui C-H, Behm FG, Raimondi SC, Dodge RK, George SL, Rivera GK, Mirro J Jr, Kalwinsky DK, Dahl GV, Murphy SB . Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia New Engl J Med 1989 321: 136–142

    Article  CAS  Google Scholar 

  6. Gu Y, Alder H, Nakamura T, Schichman SA, Prasad R, Canaani O, Saito H, Croce CM, Canaani E . Sequence analysis of the breakpoint cluster region in the ALL-1 gene involved in acute leukemia Cancer Res 1994 54: 2326–2330

    Google Scholar 

  7. Thirman MJ, Gill HJ, Burnett RC, Mbangkollo D, McCabe NR, Kobayashi H, Ziemin-van der Poel S, Kaneko Y, Morgan R, Sandberg AA . Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations New Engl J Med 1993 329: 909–914

    Article  CAS  Google Scholar 

  8. Biondi A, Rambaldi A, Rossi V, Elia L, Caslini C, Basso G, Battista R, Barbui T, Mandelli F, Masera G, Croce C, Canaani E, Cimino G . Detection of ALL-1/AF4 fusion transcript by reverse transcription-polymerase chain reaction for diagnosis and monitoring of acute leukemias with the t(4;11) translocation Blood 1993 82: 2943–2947

    CAS  PubMed  Google Scholar 

  9. Domer PH, Fakharzadeh SS, Chen C-S, Jockel J, Johansen L, Silverman GA, Kersey JH, Korsmeyer SJ . Acute mixed-lineage leukemia t(4;11)(q21;q23) generate an MLL-AF4 fusion product Proc Natl Acad Sci USA 1993 90: 7884–7888

    Article  CAS  Google Scholar 

  10. Morrissey J, Tkachuk DC, Milatovich A, Franckle U, Link M, Cleary ML . A serine/proline-rich protein is fused to HRX in t(4;11) acute leukemias Blood 1993 81: 1124–1131

    CAS  Google Scholar 

  11. Schichman SA, Caligiuri MA, Gu Y, Strout MP, Canaani E, Bloomfield CD, Croce CM . ALL-1 partial duplication in acute leukemia Proc Natl Acad Sci USA 1994 91: 6236–6239

    Article  CAS  Google Scholar 

  12. Cimino G, Moir DT, Canaani O, Williams K, Crist WM, Katzav L, Cannizzaro L, Lange B, Nowell PC, Croce CM, Canaani E . Cloning of ALL-1, the locus involved in leukemias with the t(4;11)(q21;q23), t(9;11)(p22;q23), and t(11;19)(q23;p13) chromosome translocations Cancer Res 1991 51: 6712–6714

    CAS  PubMed  Google Scholar 

  13. Gu Y, Nakamura T, Alder H, Prasad R, Canaani O, Cimino G, Croce CM, Canaani E . The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene Cell 1992 71: 701–708

    Article  CAS  Google Scholar 

  14. Tkachuk DC, Kohler S, Cleary ML . Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias Cell 1992 71: 691–700

    Article  CAS  Google Scholar 

  15. Djabali M, Selleri L, Parry P, Bower M, Young BD, Evans GA . A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias Nat Genet 1992 2: 113–118

    Article  CAS  Google Scholar 

  16. Saha V, Chaplin T, Gregorini A, Ayton P, Young BD . The leukemia-associated-protein (LAP) domain, a cysteine-rich motif, is present in a wide range of proteins, including MLL, AF10, and MLLT6 proteins Proc Natl Acad Sci USA 1995 92: 9737–9741

    Article  CAS  Google Scholar 

  17. Aasland R, Gibson TJ, Steward AF . The PHD finger: implications for chromatin-mediated transcriptional regulation Trends Biochem Sci 1995 20: 56–59

    Article  CAS  Google Scholar 

  18. Mazo AM, Huang D-H, Mozer BA, Dawid IB . The trithorax gene, a trans-acting regulator of the bithorax complex in Drosophila, encodes a protein with zinc-binding domains Proc Natl Acad Sci USA 1990 87: 2112–2116

    Article  CAS  Google Scholar 

  19. Zeleznik-Le NJ, Harden AM, Rowley JD . 11q23 translocations split the ‘AT-hook’ cruciform DNA-binding region and the transcriptional repressor domain from the activation domain of the mixed-lineage leukemia (MLL) gene Proc Natl Acad Sci USA 1994 91: 10610–10614

    Article  CAS  Google Scholar 

  20. Prasad R, Yano T, Sorio C, Nakamura T, Rallapalli R, Gu Y, Leshkowitz D, Croce CM, Canaani E . Domains with transcriptional regulatory activity within the ALL1 and AF4 proteins involved in acute leukemia Proc Natl Acad Sci USA 1995 92: 12160–12164

    Article  CAS  Google Scholar 

  21. Jones RS, Gelbart WM . The Drosophila polycomb-group gene enhancer of zeste contains a region with sequence similarity to trithorax Mol Cell Biol 1993 13: 6357–6366

    Article  CAS  Google Scholar 

  22. Paro R . Propagating memory of transcriptional states Trends Genet 1995 11: 295–297

    Article  CAS  Google Scholar 

  23. Bienz M, Muller J . Transcriptional silencing of homeotic genes in Drosophila Bioessays 1995 17: 775–784

    Article  CAS  Google Scholar 

  24. Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ . Altered Hox expression and segmental identity in MLL-mutant mice Nature 1995 378: 505–508

    Article  CAS  Google Scholar 

  25. Alkema MJ, van der Lugt NM, Bobeldijk RC, Berns A, van Lohuizen M . Transformation of axial skeleton due to overexpression of bmi-1 in transgenic mice Nature 1995 374: 724–727

    Article  CAS  Google Scholar 

  26. Alkema MJ, Bronk M, Verhoeven E, Otte A, van't Veer LJ, Berns A, van Lohuizen M . Identification of Bmi1-interacting proteins as constituents of a multimeric mammalian polycomb complex Genes Dev 1997 11: 226–240

    Article  CAS  Google Scholar 

  27. Hanson RD, Hess JL, Yu BD, Ernst P, van Lohuizen M, Berns A, van der Lugt NMT, Shashikant CS, Ruddle FH, Seto M, Korsmeyer SJ . Mammalian Trithorax and Polycomb-group homologues are antagonistic regulators of homeotic development Proc Natl Acad Sci USA 1999 96: 14372–14377

    Article  CAS  Google Scholar 

  28. Slany RK, Lavau C, Cleary ML . The oncogenic of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX Mol Cell Biol 1998 18: 122–129

    Article  CAS  Google Scholar 

  29. Reeves R, Nissen MS . The AT-DNA-binding domain of mammalian high mobility group I chromosomal proteins J Biol Chem 1990 265: 8573–8582

    CAS  PubMed  Google Scholar 

  30. Ma Q, Alder H, Nelson KK, Chatterjee D, Gu Y, Nakamura T, Canaani E, Croce CM, Siracusa LD, Buchberg AM . Analysis of the murine All-1 gene reveals conserved domains with human ALL-1 and a motif shared with DNA methyltransferases Proc Natl Acad Sci USA 1993 90: 6350–6354

    Article  CAS  Google Scholar 

  31. Cross SH, Meehan RR, Nan X, Bird A . A component of the transcriptional repressor MeCP1 shares a motif with DNA methyltransferase and HRX proteins Nat Genet 1997 16: 256–259

    Article  CAS  Google Scholar 

  32. Ida S, Seto M, Yamamoto K, Komatsu H, Tojo A, Asano U, Kamada N, Ariyoshi Y, Takahashi T, Ueda R . MLLT3 gene on 9p22 involved in t(9;11) leukemia encodes a serine/proline rich protein homologous to MLLT1 on 19p13 Oncogene 1993 8: 3085–3092

    Google Scholar 

  33. Caslini C, Shilatifard A, Yang L, Hess JL . The amino terminus of the mixed lineage leukemia protein (MLL) promotes cell cycle arrest and monocytic differentiation Proc Natl Acad Sci USA 2000 97: 2797–2802

    Article  CAS  Google Scholar 

  34. Li Q, Frestedt JL, Kersey JH . AF4 encodes a ubiquitous protein that in both native and MLL-AF4 fusion types localizes to subcellular compartments Blood 1998 92: 3841–3847

    CAS  PubMed  Google Scholar 

  35. Gossen M, Bujard H . Tight control of gene expression in mammalian cells by tetracycline-responsive promoters Proc Natl Acad Sci USA 1992 89: 5547–5551

    Article  CAS  Google Scholar 

  36. Stong RC, Korsmeyer SJ, Parkin JL, Arthur DC, Kersey JH . Human acute leukemia cell line with the t(4;11) chromosomal rearrangement exhibits B lineage and monocytic characteristics Blood 1985 65: 21–31

    CAS  PubMed  Google Scholar 

  37. Gobbi A, Di Berardino C, Scanziani E, Garofalo A, Rivolta A, Fontana G, Rambaldi A, Giavazzi R, Biondi A . A human acute lymphoblastic leukemia line with the t(4;11) translocation as a model of minimal residual disease in SCID mice Leuk Res 1997 21: 1107–1114

    Article  CAS  Google Scholar 

  38. He D, Nickerson JA, Penman S . Core filaments of the nuclear matrix J Cell Biol 1990 110: 569–580

    Article  CAS  Google Scholar 

  39. Murti KG, Kaur K, Goorha RM . Protein kinase C associates with intermediate filaments and stress fibers Exp Cell Res 1992 202: 36–44

    Article  CAS  Google Scholar 

  40. Murti HG, Davis DS, Kitchingam GR . Localization of adenovirus-encoded DNA replication proteins in the nucleus by immunogold electron microscopy J Gen Virol 1990 71: 2847–2857

    Article  CAS  Google Scholar 

  41. Joh T, Kagami Y, Yamamoto K, Segawa T, Takizawa J, Takahashi T, Ueda R, Seto M . Identification of MLL and chimeric MLL gene products involved in 11q23 translocation and possible mechanisms of leukemogenesis by MLL translocation Oncogene 1996 13: 1945–1953

    CAS  PubMed  Google Scholar 

  42. Kuzin B, Tillib S, Sedkov Y, Mizrokhi L, Mazo A . The Drosophila trithorax gene encodes a chromosomal protein and directly regulates the region-specific homeotic gene fork head Genes Dev 1994 8: 2478–2490

    Article  CAS  Google Scholar 

  43. Berezney R, Coffey DS . Nuclear matrix. Isolation and characterization of a framework structure from rat liver nuclei J Cell Biol 1977 73: 616–637

    Article  CAS  Google Scholar 

  44. Paulson JR, Laemmli UK . The structure of histone-depleted metaphase chromosomes Cell 1977 12: 817–828

    Article  CAS  Google Scholar 

  45. Saitoh Y, Laemmli UK . Metaphase chromosome structure: Bands arise from a differential folding path of the highly AT-rich scaffold Cell 1994 76: 609–622

    Article  CAS  Google Scholar 

  46. Gasser SM, Amati BB, Cardenas ME, Hofmann JF-X . Studies on scaffold attachment sites and their relation to genome function Int Rev Cytol 1989 119: 57–96

    Article  CAS  Google Scholar 

  47. Earnshaw WC, Halligan B, Cooke CA, Heck MM, Liu LF . Topoisomerase II is a structural component of mitotic chromosome scaffolds J Cell Biol 1985 100: 1706–1715

    Article  CAS  Google Scholar 

  48. Earnshaw WC, Heck MM . Localization of topoisomerase II in mitotic chromosomes J Cell Biol 1985 100: 1716–1725

    Article  CAS  Google Scholar 

  49. Gasser SM, Laroche T . Falquet J, Boy de la Tour E, Laemmli UK. Metaphase chromosome structure: involvement of topoisomerase II J Mol Biol 1986 188: 613–629

    Article  CAS  Google Scholar 

  50. Adachi Y, Kas E, Laemmli UK . Preferential, cooperative binding of DNA topoisomerase II to scaffold-associated regions EMBO J 1989 8: 3997–4006

    Article  CAS  Google Scholar 

  51. Butler LH, Slany R, Cui X, Cleary ML, Mason DY . The HRX proto-oncogene product is widely expressed in human tissues and localizes to nuclear structures Blood 1997 89: 3361–3370

    CAS  PubMed  Google Scholar 

  52. Joh T, Yamamoto K, Kagami Y, Kakuda H, Sato T, Yamamoto T, Takahashi T, Ueda R, Kaibuchi K, Seto M . Chimeric MLL products with a Ras binding cytoplasmic protein AF6 involved in t(6;11)(q27;q23) leukemia localize in the nucleus Oncogene 1997 15: 1681–1687

    Article  CAS  Google Scholar 

  53. Yano T, Nakamura T, Blechman J, Sorio C, Dang CV, Geiger B, Canaani E . Nuclear punctate distribution of ALL-1 is conferred by distinct elements at the N terminus of the protein Proc Natl Acad Sci USA 1997 94: 7286–7291

    Article  CAS  Google Scholar 

  54. Ennas M-G, Sorio C, Greim R, Nieddu M, Scarpa A, Orlandini S, Croce CM, Fey GH, Marschalek R . The human ALL-1/MLL/HRX antigen is predominantly located in the nucleus of resting and proliferating peripheral blood mononuclear cells Cancer Res 1997 57: 2035–2041

    CAS  PubMed  Google Scholar 

  55. Strick R, Laemmli UK . SARs are DNA elements of chromosome dynamics: synthesis of a SAR repressor protein Cell 1995 83: 1137–1148

    Article  CAS  Google Scholar 

  56. Laemmli UK, Kas E, Poljak L, Adachi Y . Scaffold associated regions: cis-acting determinants of chromatin structural loops and functional domains Curr Opin Genet Dev 1992 2: 275–285

    Article  CAS  Google Scholar 

  57. Aravind L, Landsman D . AT-hook motifs identified in a wide variety of DNA-binding proteins Nucleic Acids Res 1998 26: 4413–4421

    Article  CAS  Google Scholar 

  58. Broeker PL, Harden JD, Rowley JD, Zeleznik-Le N . The mixed lineage leukemia (MLL) protein involved in 11q23 translocations contains a domain that binds cruciform DNA and scaffold attachment region (SAR) DNA Curr Opin Immunol Mol Biol 1996 211: 259–268

    CAS  Google Scholar 

  59. Chinwalla V, Jane EP, Harte PJ . The Drosophila trithorax protein binds to specific chromosomal sites and is co-localized with Polycomb at many sites EMBO J 1995 14: 2056–2065

    Article  CAS  Google Scholar 

  60. Hess JL . Chromosomal translocations in benign tumors: the HMGI proteins Am J Clin Pathol 1998 109: 251–261

    Article  CAS  Google Scholar 

  61. Schoenmakers EFPM, Wanschura S, Mols R, Bullerdiek J, Van den Berghe H, Van de Ven WJM . Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumors Nat Genet 1995 10: 436–443

    Article  CAS  Google Scholar 

  62. Ashar HR, Schoenberg Fejzo M, Tkachenko A, Zhou X, Fletcher JA, Weremowicz S, Morton CC, Chada K . Disruption of the architectural factor HMGI-C: DNA-binding AT hook motifs fused in lipomas to distinct transcriptional regulatory domains Cell 1995 82: 57–65

    Article  CAS  Google Scholar 

  63. Fedele M, Berlingieri MT, Scala S, Chiariotti L, Viglietto G, Rippel V, Bullerdiek J, Santoro M, Fusco A . Truncated and chimeric HMGI-C genes induce neoplastic transformation of NIH3T3 murine fibroblasts Oncogene 1998 17: 413–418

    Article  CAS  Google Scholar 

  64. Corral J, Lavenir I, Impey H, Warren AJ, Forster A, Larson TA, Bell S, McKenzie ANJ, King G, Rabbitts TH . An Mll-AF9 gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes Cell 1996 85: 853–861

    Article  CAS  Google Scholar 

  65. Dobson CL, Warren AJ, Pannell R, Forster A, Rabbitts TH . Tumorigenesis in mice with a fusion of the leukemia oncogene Mll and the bacterial lacZ gene EMBO J 2000 19: 843–851

    Article  CAS  Google Scholar 

  66. Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T . DNA methyltransferase Dnmt1 associates with histone deacetylase activity Nat Genet 2000 24: 88–91

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Drs AT Look and M Introna for helpful discussions. We also thank Dr S Korsmeyer for the gift of anti-MLL 2F7 antibody, Dr JH Kersey for the gift of anti-AF4 C15 antibody, Dr PG Pelicci for MLL cDNA fragments and Dr G Grosveld for tet-regulatable U937T cell line. This work was supported by the National Institutes of Health grant CA21765, the American Lebanese Syrian Associated Charities, and by the Fondazione ‘Matilde Tettamanti’. CC was supported in part by a fellowship from the Associazione Italiana per la Ricerca sul Cancro and the Fondazione Italiana per la Ricerca sul Cancro. ASA was supported in part by the Instituto Nacional de Cancerologia, Bogota’, Colombia.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caslini, C., Alarcòn, A., Hess, J. et al. The amino terminus targets the mixed lineage leukemia (MLL) protein to the nucleolus, nuclear matrix and mitotic chromosomal scaffolds. Leukemia 14, 1898–1908 (2000). https://doi.org/10.1038/sj.leu.2401933

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401933

Keywords

This article is cited by

Search

Quick links