Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural model for the β-amyloid fibril based on interstrand alignment of an antiparallel-sheet comprising a C-terminal peptide

Abstract

Amyloids are a class of noncrystalline, yet ordered, protein aggregates. A new approach was used to provide the initial structural data on an amyloid fibril—comprising a peptide (β34–42) from the C-terminus of the β-amyloid protein—based on measurement of intramolecular 13C–13C distances and 13C chemical shifts by solid-state 13C NMR and individual amide absorption frequencies by isotope-edited infrared spectroscopy. Intermolecular orientation and alignment within the amyloid sheet was determined by fitting models to observed intermolecular 13C–13C couplings. Although the structural model we present is defined to relatively low resolution, it nevertheless shows a pleated antiparallel β-sheet characterized by a specific intermolecular alignment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sipe, J.D. Amyloidosis. A. Rev. Biochem. 61, 947–76 (1992).

    Article  CAS  Google Scholar 

  2. Glenner, G.G. Amyloid deposits and amyloidosis: The β-fibrilloses (first of two parts). New. Engl. J. Med. 302, 1283–1292 (1980).

    Article  CAS  Google Scholar 

  3. Glenner, G.G. Amyloid deposits and amyloidosis: The β-Fibrilloses (second of two parts). New. Engl. J. Med. 302, 1333–1343 (1980).

    Article  CAS  Google Scholar 

  4. Cohen, A.S. & Skinner, M. New frontiers in the study of amyloidosis. New Engl. J. Med. 323, 542 (1990).

    Article  CAS  Google Scholar 

  5. Lansbury, P.T., Jr. In pursuit of the molecular structure of amyloid plaque: New technology provides unexpected and critical information. Biochemistry 31, 6865–6870 (1992).

    Article  CAS  Google Scholar 

  6. Jarrett, J.T. & Lansbury, P.T., Jr. Seeding the “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer's disease and Scrapie? Cell 73, 1055–1058 (1993).

    Article  CAS  Google Scholar 

  7. Lotz, B., Gonthier-Vassal, A., Brack, A. & Magoshi, J. Twisted single crystals of Bombyx mori silk fibroin and related model polypeptides with β structure. J. molec. Biol. 156, 345–357 (1982).

    Article  CAS  Google Scholar 

  8. Marsh, R.E., Corey, R.B. & Pauling, L. An investigation of the structure of silk fibroin. Biochim. biophys. Acta 16, 1–34 (1955).

    Article  CAS  Google Scholar 

  9. Kosik, K.S. Alzheimer's disease: A cell biological perspective. Science 256, 780–783 (1992).

    Article  CAS  Google Scholar 

  10. Kosik, K.S., Alzheimer's disease sphinx: A riddle with plaques and tangles. J. cell Biol. 127, 1501–1514 (1994).

    Article  CAS  Google Scholar 

  11. Yankner, B.A. & Mesulam, M.-M. β-amyloid and the pathogenesis of Alzheimer's disease. New Eng. J. Med. 325, 1849–1857 (1991).

    Article  CAS  Google Scholar 

  12. Selkoe, D. The molecular pathology of Alzheimer′s disease. Neuron 6, 487–498 (1991).

    Article  CAS  Google Scholar 

  13. Seubert, P. et al Isolation and quantification of soluble Alzheimer′s β-peptide from biological fluids. Nature 359, 325–327 (1992).

    Article  CAS  Google Scholar 

  14. Shoji, M. et al. Production of the Alzheimer amyloid β protein by normal proteolytic processing. Science 258, 126–129 (1992).

    Article  CAS  Google Scholar 

  15. Haass, C. et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325 (1992).

    Article  CAS  Google Scholar 

  16. Iwatsubo, T. et al. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ42(43). Neuron 13, 45–53 (1994).

    Article  CAS  Google Scholar 

  17. Jarrett, J.T., Berger, E.P. & Lansbury, P.T., Jr. The carboxy terminus of β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32, 4693–4697 (1993).

    Article  CAS  Google Scholar 

  18. Cai, X.-D., Golde, T.E. & Younkin, S.G. Release of excess amyloid β protein from a mutant amyloid protein precursor. Science 259, 514–516 (1993).

    Article  CAS  Google Scholar 

  19. Suzuki, N. et al. An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (βAPP717) mutants. Science 264, 1336–1340 (1994).

    Article  CAS  Google Scholar 

  20. Tamaoka, A. et al. App717 Missense mutation affects the ratio of amyloid β protein species (Aβ1-42/43 and Aβ1-40) in familial Alzheimer's disease brain. J. biol. Chem. 269, 32721–32724 (1994).

    CAS  PubMed  Google Scholar 

  21. Halverson, K., Fraser, P.E., Kirschner, D.A. & Lansbury, P.T. Jr. Molecular determinants of amyloid deposition in Alzheimer's disease: conformational studies of synthetic β-protein fragments. Biochemistry 29, 2639–2644 (1990).

    Article  CAS  Google Scholar 

  22. Ashburn, T.T., Auger, M. & Lansbury, P.T., Jr. The structural basis of pancreatic amyloid formation: Isotope-edited spectroscopy in the solid state. J. Am. chem. Soc. 114, 790–791 (1992).

    Article  CAS  Google Scholar 

  23. Halverson, K.H., Sucholeiki, I., Ashburn, T.T. & Lansbury, P.T., Jr. Location of β-sheet-forming sequences in amyloid proteins by FTIR. J. Am. chem. Soc. 113, 6701–6703 (1991).

    Article  CAS  Google Scholar 

  24. Krimm, S. & Bandekar, J. Advances in protein chemistry (ed C. Anfinsen) 183–364 (Academic Press, Boston, 1986).

    Google Scholar 

  25. Saitô, H. Conformation-dependent 13C chemical shifts: a new means of conformational characterization as obtained by high-resolution solid-state 13C NMR. Magn. reson. Chem. 24, 835–852 (1986).

    Article  Google Scholar 

  26. Spera, S. & Bax, A. Empirical correlation between protein backbone conformation and Cα and Cβ 13C nuclear magnetic resonance chemical shifts. J. Am. chem. Soc. 113, 5490–5492 (1991).

    Article  CAS  Google Scholar 

  27. de Dios, A.C., Pearson, J.G. & Oldfield, E. Secondary and tertiary structural effects on protein NMR chemical shifts: An ab initio approach. Science 260, 1491–1496 (1993).

    Article  CAS  Google Scholar 

  28. Griffiths, J.M. & Griffin, R.G. Nuclear magnetic resonance methods for measuring dipolar couplings in rotating solids. Analytica chim. Acta 283, 1081–1101 (1993).

    Article  CAS  Google Scholar 

  29. Spencer, R.G.S., Halverson, K.J., Auger, M., McDermott, A.E;., Griffin, G.R. & Lansbury, P.T., Jr. An unusual peptide conformation may precipitate amyloid formation in Alzheimer's disease: Application of solid-state NMR to the determination of protein secondary structure. Biochemistry 30, 10382–10387 (1991).

    Article  CAS  Google Scholar 

  30. Raleigh, D.P., Creuzet, F., Das Gupta, S.K., Levitt, M.H. & Griffin, R.G. Measurement of internuclear distances in polycrystalline solids: Rotationally enhanced transfer of nuclear spin magnetization. J. Am. chem. Soc. 111, 4502–4503 (1989).

    Article  CAS  Google Scholar 

  31. Creuzet, F. et al. Determination of membrane protein structure by rotational resonance NMR: Bacteriorhodopsin. Science 251, 783–786 (1991).

    Article  CAS  Google Scholar 

  32. Gu, Z. & McDermott, A. Chemical shielding anisotropy of protonated and deprotonated carboxylates in amino acids. J. Am. chem. Soc. 115, 4282–4285 (1993).

    Article  CAS  Google Scholar 

  33. Griffiths, J. et al. Rotational resonance solid-state NMR elucidates a structural model of pancreatic amyloid. J. Am. chem. Soc. 117, 3539–3546 (1995).

    Article  CAS  Google Scholar 

  34. Levitt, M.H., Raleigh, D.P., Creuzet, F. & Griffin, R.G. Theory and simulations of homonuclear spin pair systems in rotating solids. J. chem. Phys. 92, 6347–6364 (1990).

    Article  CAS  Google Scholar 

  35. VanderHart, D.L., Earl, W.L. & Garroway, A.N. Resolution in 13C NMR of organic solids using high-power proton decoupling and magic-angle sample spinning. J. magn. Reson. 44, 361–401 (1981).

    CAS  Google Scholar 

  36. VanderHart, D.L. Influence of molecular packing on solid-state 13C chemical shifts: The n-alkanes. J magn. Reson. 44, 117–125 (1981).

    CAS  Google Scholar 

  37. Kennedy, S.D. & Bryant, R.G. Structural effects of hydration: studies of lysozyme by 13C solids NMR. Biopolymers 29, 1801–1806 (1990).

    Article  CAS  Google Scholar 

  38. Gregory, R.B., Gangoda, M., Gilpin, R.K. & Su, W. The influence of hydration on the conformation of lysozyme studied by solid-state 13C-NMR spectroscopy. Biopolymers 33, 513–519 (1993).

    Article  CAS  Google Scholar 

  39. Harbison, G.S., Herzfeld, J. & Griffin, R.G. Solid state 15N NMR study of the Schiff base in bacteriorhodopsin. Biochemistry 22, 1–5 (1983).

    Article  CAS  Google Scholar 

  40. Ishida, M., Asakura, T., Yokoi, M. & Saito, H. Solvent- and mechanical-treatment-induced conformational transition of silk fibroins studied by high-resolution solid-state 13C NMR spectroscopy. Macromolecules 23, 88–94 (1990).

    Article  CAS  Google Scholar 

  41. Stewart, D.E., Sarkar, A. & Wampler, J.E. Occurrence and role of Cis peptide bonds in protein structures. J. molec. Biol. 214, 253–260 (1990).

    Article  CAS  Google Scholar 

  42. Chou, K.-C. & Scheraga, H.A. Origin of the right-handed twist of β-sheets of poly(LVal) chains. Proc. natn. Acad. Sci. U.S.A. 79, 7047–7051 (1982).

    Article  CAS  Google Scholar 

  43. Chou, K.-C., Pottle, M., Nemethy, G., Ueda, Y. & Scheraga, H.A. Structure of β-Sheets. Origin of the right-handed twist and of the increased stability of antiparallel over parallel sheets. J. molec. Biol. 162, 89–112 (1982).

    Article  CAS  Google Scholar 

  44. Chothia, C. Conformation of twisted β pleated sheets in proteins. J. molec. Biol. 75, 295–302 (1973).

    Article  CAS  Google Scholar 

  45. Salemme, F.R. Structural properties of protein β sheets. Prog. Biophys. molec. Biol. 42, 95–133 (1983).

    Article  CAS  Google Scholar 

  46. Baumann, U., Wu, S., Flaherty, K.M. & McKay, D.B. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J. 12, 3357–3364 (1993).

    Article  CAS  Google Scholar 

  47. Steinbacher, S. et al. Crystal structure of P22 tailspike protein: Interdigitated subunits in a thermostable trimer. Science 265, 383–386 (1994).

    Article  CAS  Google Scholar 

  48. Sprang, S.R. On a (β-) roll. Trends biochem. Sci. 18, 313–314 (1993).

    Article  CAS  Google Scholar 

  49. Yoder, M.D., Keen, N.T. & Jurnak, F. New domain motif: The structure of pectate lyase C, a secreted plant virulence factor. Science 260, 1503–1507 (1993).

    Article  CAS  Google Scholar 

  50. Jurnak, F., Yoder, M.D., Pickersgill, R. & Jenkins, J. Parallel β-domains: a new fold in protein structures. Curr. Opin. struct. Biol. 4, 802–806 (1994).

    Article  CAS  Google Scholar 

  51. Lifson, S. & Sander, C. Specific recognition in the tertiary structure of β-sheets of proteins. J. molec. Biol. 139, 627–639 (1980).

    Article  CAS  Google Scholar 

  52. von Heijne, G. & Blomberg, C. The β structure: Inter-strand correlations. J. molec. Biol. 117, 821–824 (1977).

    Article  CAS  Google Scholar 

  53. Bromberg, S. & Dill, K.A. Side-chain entropy and packing in proteins. Prot. Sci. 3, 997–1009 (1994).

    Article  CAS  Google Scholar 

  54. Dill, K.A. Dominant forces in protein folding. Biochemistry 29, 7133–7155 (1990).

    Article  CAS  Google Scholar 

  55. Chan, H.S. & Dill, K.A. The protein folding problem. Physics Today, 24–32 (1993).

    Article  CAS  Google Scholar 

  56. Cohen, F.E. & Kuntz, I.D. in Prediction of protein structure and the principles of protein conformation (ed G.D. Fasman) 647–706, ch. 17 (New York: Plenum, New York, 1989).

    Book  Google Scholar 

  57. Jarrett, J.T., Costa, P.R., Griffin, R.G. & Lansbury, P.T. Models of the C-terminus: Differences in amyloid structure may lead to segregation of “long” and “short” fibrils. J. Am. chem. Soc. 116, 9741–9742 (1994).

    Article  CAS  Google Scholar 

  58. Brooks, B.R. et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  59. Howarth, O.W. & Lilley, D.M. Carbon-13 NMR of peptides and proteins. Prog. nucl. magn. reson. Spectrosc. 12, 1–40 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lansbury, P., Costa, P., Griffiths, J. et al. Structural model for the β-amyloid fibril based on interstrand alignment of an antiparallel-sheet comprising a C-terminal peptide. Nat Struct Mol Biol 2, 990–998 (1995). https://doi.org/10.1038/nsb1195-990

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1195-990

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing