Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suppressive vaccination with DNA encoding a variable region gene of the T–cell receptor prevents autoimmune encephalomyelitis and activates Th2 immunity

Abstract

A variable region gene of the T–cell receptor, Vβ8.2, is rearranged, and its product is expressed on pathogenic T cells that induce experimental autoimmune encephalomyelitis (EAE) in H–2u mice after immunization with myelin basic protein (MBP). Vaccination of these mice with naked DNA encoding Vβ8.2 protected mice from EAE. Analysis of T cells reacting to the pathogenic portion of the MBP molecule indicated that in the vaccinated mice there was a reduction in the Thl cytokines interleukin–2 (IL–2) and interferon–γ. In parallel, there was an elevation in the production of IL–4, a Th2 cytokine associated with suppression of disease. A novel feature of DNA immunization for autoimmune disease, reversal of the autoimmune response from Thl to Th2, may make this approach attractive for treatment of Thl–mediated diseases like multiple sclerosis, juvenile diabetes and rheumatoid arthritis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zamvil, S. & Steinman, L. The T lymphocyte in autoimmune encephalomyelitis. Ann. Rev. Immunol. 8, 579–621 (1990).

    Article  CAS  Google Scholar 

  2. Zamvil, S.S. et al. Predominant expression of a T cell receptor V beta gene subfamily in autoimmune encephalomyelitis. J. Exp. Med. 167, 1586–1596 (1988).

    Article  CAS  Google Scholar 

  3. Acha-Orbea, H. et al. Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell 54, 263–273 (1988).

    Article  CAS  Google Scholar 

  4. Urban, J.L. et al. Restricted use of T cell receptor V genes in murine autoimmune encephalomyelitis raises possibilities for antibody therapy. Cell 54, 577–592 (1988).

    Article  CAS  Google Scholar 

  5. Sakai, K. et al. Involvement of distinct murine T-cell receptors in the autoimmune encephalitogenic response to nested epitopes of myelin basic protein. Proc. Natl. Acad. Sci. USA 85, 8608–8612 (1988).

    Article  CAS  Google Scholar 

  6. Vandenbark, A.A., Hashim, G. & Offner, H. Immunization with a synthetic T-cell receptor V-region peptide protects against experimental autoimmune encephalomyelitis. Nature 341, 541–544 (1989).

    Article  CAS  Google Scholar 

  7. Howell, M.D. et al. Vaccination against experimental allergic encephalomyelitis with T cell receptor peptides. Science 246, 668–670 (1989).

    Article  CAS  Google Scholar 

  8. Pardoll, D.M. & Beckerleg, A.M. Exposing the immunology of naked DNA vaccines. Immunity 3, 165–169 (1995).

    Article  CAS  Google Scholar 

  9. Davis, H.L., Michel, M.L. & Whalen, R.G. DNA-based immunization induces continuous secretion of hepatitis B surface antigen and high levels of circulating antibody. Hum. Mol. Genet. 2, 1847–1851 (1993).

    Article  CAS  Google Scholar 

  10. Ulmer, J.B. et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745–1749 (1993).

    Article  CAS  Google Scholar 

  11. Tang, D.C., DeVit, M. & Johnston, S.A. Genetic immunization is a simple method for eliciting an immune response. Nature 356, 152–154 (1992).

    Article  CAS  Google Scholar 

  12. Mosmann, T.R. & Coffman, R.L. TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 1, 145–173 (1989).

    Article  Google Scholar 

  13. Abbas, A.K. et al. Activation and function of CD4+ T-cell subsets. Immunol. Rev. 123, 5 (1991).

  14. Xu, D. & Liew, F.Y. Protection against leishmaniasis by injection of DNA encoding a major surface glycoprotein, gp63, of L. major . Immunology 84, 173–176 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zamvil, S.S. et al. Multiple discrete encephalitogenic epitopes of the autoantigen myelin basic protein include a determinant for I-E class II-restricted T cells. J. Exp. Med. 168, 1181–1186 (1988).

    Article  CAS  Google Scholar 

  16. Kuchroo, V.K. et al. B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: Application to autoimmune disease therapy. Cell 80, 707–718 (1995).

    Article  CAS  Google Scholar 

  17. Powell, M.B. et al. Lymphotoxin and tumor necrosis factor-alpha production by myelin basic protein-specific T cell clones correlates with encephalitogenicity. Int. Immunol. 2, 539–544 (1990).

    Article  CAS  Google Scholar 

  18. Racke, M.K. et al. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J. Exp. Med. 180, 1961–1966 (1994).

    Article  CAS  Google Scholar 

  19. Wraith, D.C., McDevitt, H.O., Steinman, L. & Acha-Orbea, H. T cell recognition as the target for immune intervention in autoimmune disease. Cell 57, 709–715 (1989).

    Article  CAS  Google Scholar 

  20. Ben-Nun, A., Wekerle, H. & Cohen, I.R. Vaccination against autoimmune encephalomyelitis with T-lymphocyte line cells reactive against myelin basic protein. Nature 292, 60–61 (1981).

    Article  CAS  Google Scholar 

  21. Lider, O., Reshef, T., Beraud, E., Ben-Nun, A. & Cohen, I.R. Anti-idiotypic network induced by T cell vaccination against experimental autoimmune encephalomyelitis. Science 239, 181–183 (1988).

    Article  CAS  Google Scholar 

  22. Zhang, J., Medaer, R., Stinissen, P., Hafler, D. & Raus, J. MHC-restricted depletion of human myelin basic protein-reactive T cells by T cell vaccination. Science 261, 1451–1454 (1993).

    Article  CAS  Google Scholar 

  23. Medaer, R., Stinissen, P., Truyen, L., Raus, J. & Zhang, J. Depletion of myelin-basic-protein autoreactive T cells by T-cell vaccination: Pilot trial in multiple sclerosis. Lancet 346, 807–808 (1995).

    Article  CAS  Google Scholar 

  24. Bourdette, D.N. et al. Immunity to TCR peptides in multiple sclerosis. I. Successful immunization of patients with synthetic V beta 5.2 and V beta 6.1 CDR2 peptides. J. Immunol. 152, 2510–2519 (1994).

    CAS  PubMed  Google Scholar 

  25. Chou, Y.K. et al. Immunity to TCR peptides in multiple sclerosis. II. T cell recognition of V beta 5.2 and V beta 6.1 CDR2 peptides. J. Immunol. 152, 2520–2529 (1994).

    CAS  PubMed  Google Scholar 

  26. Chen, Y., Kuchroo, V.K., Inobe, J., Hafler, D.A. & Weiner, H.L. Regulatory T cell clones induced by oral tolerance: Suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).

    Article  CAS  Google Scholar 

  27. Lehmann, P.V., Forsthuber, T., Miller, A. & Sercarz, E.E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358, 155 (1992).

    Article  CAS  Google Scholar 

  28. Brocke, S. et al. Treatment of experimental encephalomyelitis with a peptide analogue of myelin basic protein. Nature 379, 343–346 (1996).

    Article  CAS  Google Scholar 

  29. Oksenberg, J.R. et al. Selection for T-cell receptor Vβ-Dβ-Jβ gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature 362, 68–70 (1993).

    Article  CAS  Google Scholar 

  30. Steinman, L. Escape from “horror autotoxicus”: Pathogenesis and treatment of autoimmune disease. Cell 80, 7–10 (1995).

    Article  CAS  Google Scholar 

  31. Wucherpfennig, K.W. et al. Shared human T cell receptor Vβ usage to immun-odominant regions of myelin basic protein. Science 248, 1016 (1990).

    Article  CAS  Google Scholar 

  32. Warren, K.G., Catz, I. & Steinman, L. The dominant T and B cell response in the central nervous system in multiple sclerosis is directed to myelin basic protein residues 86–99. Proc. Natl. Acad. Sci. USA 92, 11061–11065 (1995).

    Article  CAS  Google Scholar 

  33. Steinman, L. Presenting an odd autoantigen. Nature 375, 739–740 (1995).

    Article  CAS  Google Scholar 

  34. Steinman, L., Waisman, A. & Altman, D., T-cell responses in multiple sclerosis. Mol. Med. Today 1, 79–83 (1995).

    Article  CAS  Google Scholar 

  35. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual, edn. 2 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  36. Davis, H.L. & Jasmin, B.J. Direct gene transfer into mouse diaphragm. FEES Lett. 333, 146–150 (1993).

    Article  CAS  Google Scholar 

  37. Sakai, K. et al. Characterization of a major encephalitogenic T cell epitope in SJL/J mice with synthetic oligopeptides of myelin basic protein. J. Neuroimmunol. 19, 21–32 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waisman, A., Ruiz, P., Hirschberg, D. et al. Suppressive vaccination with DNA encoding a variable region gene of the T–cell receptor prevents autoimmune encephalomyelitis and activates Th2 immunity. Nat Med 2, 899–905 (1996). https://doi.org/10.1038/nm0896-899

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0896-899

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing