Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A critical role for NF-κB in Gata3 expression and TH2 differentiation in allergic airway inflammation

Abstract

The transcription factor GATA-3 is expressed in T helper 2 (TH2) but not TH1 cells and plays a critical role in TH2 differentiation and allergic airway inflammation in vivo. Mice that lack the p50 subunit of nuclear factor κB (NF-κB) are unable to mount airway eosinophilic inflammation. We show here that this is not due to defects in TH2 cell recruitment but due to the inability of the p50−/− mice to produce interleukin 4 (IL-4), IL-5 and IL-13: cytokines that play distinct roles in asthma pathogenesis. CD4+ T cells from p50−/− mice failed to induce Gata3 expression under TH2-differentiating conditions but showed unimpaired T-bet expression and interferon γ (IFN-γ) production under TH1-differentiating conditions. Inhibition of NF-κB activity prevented GATA-3 expression and TH2 cytokine production in developing, but not committed, TH2 cells. Our studies provide a molecular basis for the need for both T cell receptor and cytokine signaling for GATA-3 expression and, in turn, TH2 differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p50−/− mice can recruit adoptively transferred TH2 cells to generate airway inflammation.
Figure 2: NF-κB–deficiency impairs GATA-3 expression.
Figure 3: GATA-3 expression in developing TH2 cells requires NF-κB activation.
Figure 4: NF-κB is not required for GATA-3 expression or TH2 cytokine production in committed TH2 cells.
Figure 5: NF-κB–deficiency does not affect T-bet expression and IFN-γ production.

Similar content being viewed by others

References

  1. Walker, C. et al. Allergic and non-allergic asthmatics have distinct patterns of T-cell activation and cytokine production in peripheral blood and bronchoalveolar lavage. Am. Rev. Respir. Dis. 146, 109–115 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Robinson, D. S. et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med. 326, 298–304 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Wills-Karp, M. Immunologic basis of antigen-induced airway hyperresponsiveness. Annu. Rev. Immunol. 17, 255–281 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Ray, A. & Cohn, L. Th2 cells and GATA-3 in asthma: new insights into the regulation of airway inflammation. J. Clin. Invest. 104, 985–993. (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, D.-H., Cohn, L., Ray, P., Bottomly, K. & Ray, A. Transcription factor GATA-3 is differentially expressed in Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J. Biol. Chem. 272, 21597–21603 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Zheng, W.-P. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Ting, C.-N., Olson, M. C., Barton, K. P. & Leiden, J. M. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384, 474–478. (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, D. H. et al. Inhibition of allergic inflammation in a murine model of asthma by expression of a dominant-negative mutant of GATA-3. Immunity 11, 473–482. (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Baldwin, A. S. Jr The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649–681 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Sha, W. C. Regulation of immune responses by NF-κB/Rel transcription factors. J. Exp. Med. 187, 143–146 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, L. et al. Essential role of nuclear factor κB in the induction of eosinophilia in allergic airway inflammation. J. Exp. Med. 188, 1739–1750. (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cohn, L., Homer, R. J., Marinov, A., Rankin, J. & Bottomly, K. Induction of airway mucus production by T helper 2 (Th2) cells: a critical role for interleukin-4 in cell recruitment but not mucus production. J. Exp. Med. 186, 1737–1747 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cohn, L., Tepper, J. S. & Bottomly, K. IL-4-independent induction of airway hyperresponsiveness by Th2, but not Th1, cells. J. Immunol. 161, 3813–3816. (1998).

    CAS  PubMed  Google Scholar 

  14. Ouyang, W. et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9, 745–755. (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9, 765–775. (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Siegel, M. D., Zhang, D.-H., Ray, P. & Ray, A. Activation of the interleukin-5 promoter by cAMP in murine EL-4 cells requires the GATA-3 and CLE0 elements. J. Biol. Chem. 270, 24548–24555 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, D.-H., Yang, L. & Ray, A. Differential responsiveness of the interleukin-5 (IL-5) and IL-4 genes to transcription factor GATA-3. J. Immunol. 161, 3817–3821 (1998).

    CAS  PubMed  Google Scholar 

  18. Ranganath, S. et al. GATA-3-dependent enhancer activity in IL-4 gene regulation. J. Immunol. 161, 3822–3826 (1998).

    CAS  PubMed  Google Scholar 

  19. Agarwal, S., Avni, O. & Rao, A. Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo. Immunity 12, 643–652 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. George, K. M. et al. Embryonic expression and cloning of the murine GATA-3 gene. Development 120, 2673–2686. (1994).

    CAS  PubMed  Google Scholar 

  21. Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12, 27–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Ranger, A. M. et al. The transcription factor NF-ATc is essential for cardiac valve formation. Nature 392, 186–190 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Yoshida, H. et al. The transcription factor NF-ATc1 regulates lymphocyte proliferation and Th2 cytokine production. Immunity 8, 115–124 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Lin, Y. Z., Yao, S. Y., Veach, R. A., Torgerson, T. R. & Hawiger, J. Inhibition of nuclear translocation of transcription factor NF-κB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J. Biol. Chem. 270, 14255–14258 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, R. Y., Fan, C., Olashaw, N. E., Wang, X. & Zuckerman, K. S. Tumor necrosis factor-α-induced proliferation of human Mo7e leukemic cells occurs via activation of nuclear factor κB transcription factor. J. Biol. Chem. 274, 13877–13885 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. McKenzie, A. N. et al. Structural comparison and chromosomal localization of the human and mouse IL-13 genes. J. Immunol. 150, 5436–5444 (1993).

    CAS  PubMed  Google Scholar 

  27. Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Jain, J., Loh, C. & Rao, A. Transcriptional regulation of the IL-2 gene. Curr. Opin. Immunol. 7, 333–342 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Kuo, C. T. & Leiden, J. M. Transcriptional regulation of T lymphocyte development and function. Annu. Rev. Immunol. 17, 149–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Jamieson, C., McCaffrey, P. G., Rao, A. & Sen, R. Physiologic activation of T cells via the T cell receptor induces NF-κB. J. Immunol. 147, 416–420 (1991).

    CAS  PubMed  Google Scholar 

  31. Kang, S.-M., Tran, A.-C., Grilli, M. & Lenardo, M. J. NF-κB subunit regulation in nontransformed CD4+ T lymphocytes. Science 256, 1451–1456 (1992).

    Article  Google Scholar 

  32. Robinson, D. et al. IGIF does not drive Th1 development but synergizes with IL-12 for interferon-gamma production and activates IRAK and NF-κB. Immunity 7, 571–581 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Matsumoto, S. et al. Interleukin-18 activates NF-κB in murine T helper type 1 cells. Biochem. Biophys. Res. Commun. 234, 454–457 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Sica, A. et al. Interaction of NF-κB and NFAT with the interferon-γ promoter. J. Biol. Chem. 272, 30412–30420 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Murphy, T. L., Cleveland, M. G., Kulesza, P., Magram, J. & Murphy, K. M. Regulation of interleukin 12 p40 expression through an NF-κB half-site. Mol. Cell. Biol. 15, 5258–5267 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shen, C. H. & Stavnezer, J. Interaction of stat6 and NF-κB: direct association and synergistic activation of interleukin-4-induced transcription. Mol. Cell. Biol. 18, 3395–3404 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Delphin, S. & Stavnezer, J. Characterization of an interleukin 4 (IL-4) responsive region in the immunoglobulin heavy chain germline epsilon promoter: regulation by NF- IL-4, a C/EBP family member and NF-κB/p50. J. Exp. Med. 181, 181–192 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Mikita, T., Campbell, D., Wu, P., Williamson, K. & Schindler, U. Requirements for interleukin-4-induced gene expression and functional characterization of Stat6. Mol. Cell. Biol. 16, 5811–5820 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sha, W. C., Liou, H.-C., Tuomanen, E. I. & Baltimore, D. Targeted disruption of the p50 subunit of NF-κB leads to multifocal defects in immune responses. Cell 80, 321–330 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Glimcher for the antibody to T-bet. Supported by grants from the NIH (to A. R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, J., Chen, CH., Yang, L. et al. A critical role for NF-κB in Gata3 expression and TH2 differentiation in allergic airway inflammation. Nat Immunol 2, 45–50 (2001). https://doi.org/10.1038/83158

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing