Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cocaine self-administration in dopamine-transporter knockout mice

An Erratum to this article was published on 01 August 1998

Abstract

The plasma membrane dopamine transporter (DAT) is responsible for clearing dopamine from the synapse. Cocaine blockade of DAT leads to increased extracellular dopamine, an effect widely considered to be the primary cause of the reinforcing and addictive properties of cocaine. In this study we tested whether these properties are limited to the dopaminergic system in mice lacking DAT. In the absence of DAT, these mice exhibit high levels of extracellular dopamine, but paradoxically still self-administer cocaine. Mapping of the sites of cocaine binding and neuronal activation suggests an involvement of serotonergic brain regions in this response. These results demonstrate that the interaction of cocaine with targets other than DAT, possibly the serotonin transporter, can initiate and sustain cocaine self-administration in these mice.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rate of cocaine self-administration.
Figure 2: Dose–response curve for cocaine self-administration.
Figure 3: Effect of cocaine on extracellular dopamine as measured by microdialysis.
Figure 4: In vitro autoradiographic binding of cocaine analogue [125I]RTI-55.
Figure 5: In situ hybridization of brain mRNA expression of c-fos in mice treated with cocaine.

Similar content being viewed by others

References

  1. Ritz, M.C., Cone, E.J. & Kuhar, M.J. Cocaine inhibition of ligand binding at dopamine, norepinephrine and serotonin transporters: a structure activity study. Life Sci. 46, 635–645 (1990)

    Article  CAS  Google Scholar 

  2. Amara, S.G. & Kuhar, M.J. Neurotransmitter transporters: recent progress. Annu. Rev. Neurosci. 16, 73– 93 (1993)

    Article  CAS  Google Scholar 

  3. Kuhar, M.J., Ritz, M.C. & Boja, J.W. The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci . 14, 299–302 (1991)

    Article  CAS  Google Scholar 

  4. Wise, R.A. & Bozarth, M.A. A psychomotorstimulant theory of addiction. Psychol. Rev. 94, 469– 492 (1987)

    Article  CAS  Google Scholar 

  5. Broadbent, J., Michael, E.K., Riddle, E.E. & Appel, J.B. Involvement of dopamine uptake in the discriminative stimulus effects of cocaine. Behav. Pharmacol. 2, 187–197 (1991)

    Article  Google Scholar 

  6. Ritz, M.C., Lamb, R.J., Goldberg, S.R. & Kuhar, M.J. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237, 1219–1223 ( 1987)

    Article  CAS  Google Scholar 

  7. Bergman, J., Madras, B.K., Johnson, S.E. & Spealman, R.D. Effects of cocaine and related drugs in nonhumans primates. III. Self-administration by squirrel monkeys. J. Pharmacol. Exp. Ther. 251, 150–155 (1989)

    CAS  PubMed  Google Scholar 

  8. Di Chiara, G. The role of dopamine in drug-abuse viewed from the perspective of its role in motivation . Drug Alcohol Depend. 38, 95– 137 (1995)

    Article  CAS  Google Scholar 

  9. Volkow, N.D et al., Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 386, 827– 830 (1997)

    Article  CAS  Google Scholar 

  10. Giros, B., Jaber, M., Jones, S.R., Wightman, R.M. & Caron, M.G. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379 , 606–612 (1996)

    Article  CAS  Google Scholar 

  11. Jones, S.R et al., Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc. Natl. Acad. Sci. USA 95, 4029– 4034 (1998)

    Article  CAS  Google Scholar 

  12. Johanson, C.E. & Fischman, M.W. The pharmacology of cocaine relates to its abuse. Pharmacol. Rev. 41, 3– 52 (1989)

    CAS  PubMed  Google Scholar 

  13. Boja, J.W. et al., High-affinity binding of [125I]RTI-55 to dopamine and serotonin transporters in rat brain. Synapse 12, 27– 36 (1992)

    Article  CAS  Google Scholar 

  14. Cline, E.J. et al., In vivo binding of [125I]RTI-55 to dopamine transporters: pharmacology and regional distribution with autoradiography. Synapse 12, 37–46 ( 1992)

    Article  CAS  Google Scholar 

  15. Staley, J.K., Basile, M., Flynn, D.D. & Mash, D.C. Visualizing dopamine and serotonin transporters in the human brain with the potent cocaine analog [125I]RTI-55: in vitro binding and autoradiographic characterization. J. Neurochem. 62, 549–556 (1994)

    Article  CAS  Google Scholar 

  16. Madras, B.K. et al. Cocaine receptors labeled by [3H]2b-carbomethoxy-3-b-(4-fluorophenyl)tropane . Mol. Pharm. 36, 518–524 (1989)

    CAS  Google Scholar 

  17. Gu, H., Wall, S.C. & Rudnick, G. Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. J. Biol. Chem. 269, 7124–7130 (1994)

    CAS  PubMed  Google Scholar 

  18. Fujita, M., Shimada, S., Fukuchi, K., Yohyama, M. & Nishimura, T. Distribution of cocaine recognition sites in rat brain: in vitro and ex vivo autoradiography with [125I]RTI-55. J. Chem. Neuroanat. 7, 13–23 (1994)

    Article  CAS  Google Scholar 

  19. Shearman, L.P., Collins, L.M. & Meyer, J.S. Characterization and localization of [125I]RTI-55-labeled cocaine binding sites in fetal and adult rat brain. J. Pharmacol. Exp. Ther. 277, 1770–1783 (1996)

    CAS  PubMed  Google Scholar 

  20. Orgen, S.O., Holm, A.C., Hall, H. & Lindberg, U.H. Alaproclate, a new selective 5-HT uptake inhibitor with therapeutic potential in depression and senile dementia. J. Neural Trans. 59, 264–286 (1984)

    Google Scholar 

  21. Tejani-Butt, S.M. [3H]Nisoxetine: a radioligand for quantitation of norepinephrine uptake sites by autoradiography or by homogenate binding. J. Pharmacol. Exp. Ther. 260, 427–434 (1992)

    CAS  PubMed  Google Scholar 

  22. Spealman, R.D. Noradrenergic involvement in the discriminative stimulus effects of cocaine in squirrel monkeys. J. Pharmacol. Exp. Ther. 275, 53 –62 (1995)

    CAS  PubMed  Google Scholar 

  23. Snoddy, A.M. & Tessel, R.E. Nisoxetine and amphetamine share discriminative stimulus properties in mice. Pharmacol. Biochem. Behav. 19, 205–210 ( 1983)

    Article  CAS  Google Scholar 

  24. Morgan, J.I. & Curran, T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-onocogenes fos and jun. Annu. Rev. Neurosci. 14, 421– 451, 1991

    Article  CAS  Google Scholar 

  25. Nestler E.J. Cellular responses to chronic treatment with drugs of abuse. Crit. Rev. Neurobiol. 7, 23–39 (1993 )

    CAS  PubMed  Google Scholar 

  26. Hiroi, N. et al. FosB mutant mice: Loss of chronic cocaine induction of Fos-related proteins and heightened sensitivity to cocaine's psychomotor and rewarding effects . Proc. Natl. Acad. Sci. USA 94, 10397– 10402 (1997)

    Article  CAS  Google Scholar 

  27. Barr, G.A. & Lithgow, T. Pharmaco-ontogeny of reward: enhancement of self-stimulation by d-amphetamine and cocaine in 3- and 10-day-old rats . Dev. Brain Res. 24, 193– 202, (1984)

    Article  Google Scholar 

  28. Pagliusi, S.R., Tessari, M., DeVevey, S., Chiamulera, C. & Merlo Pich, M. The reinforcing properties of nicotine are associated with a specific patterning of c-fos expression in the rat brain. Eur. J. Neurosci. 8, 2247–2256 (1996)

    Article  CAS  Google Scholar 

  29. Umino, A., Nishikawa, T. & Takahashi K. Methamphetamine-induced nuclear c-Fos in rat brain regions. Neurochem. Int. 26, 85–90 ( 1995)

    Article  CAS  Google Scholar 

  30. Crawford, C.A., McDougall, S.A., Bolanos, C.A., Hall, S. & Berger, S.P. The effects of the kappa agonist U-50,488 on cocaine induced conditioned and unconditioned behaviors and Fos immunoreactivity. Psychopharmacology 120, 392–399 (1995)

    Article  CAS  Google Scholar 

  31. Marek, G.J. & Aghajanian G.K. LSD and phenetylamine hallucinogen DOI are potent partial agonists at 5-HT 2A receptors on interneurons in rat piriform cortex. J. Pharmacol. Exp. Ther. 278, 1373–1382, 1996

    CAS  PubMed  Google Scholar 

  32. Sugita, S. et al. Phencyclidine-induced expression of c-fos-like immunoreactivity in mouse brain regions. Neurochem. Int. 28, 545– 550 (1996)

    Article  CAS  Google Scholar 

  33. Volkow, N.D. et al. Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386, 830– 833 (1997)

    Article  CAS  Google Scholar 

  34. Parsons, L.H., Weiss, F. & Koob, G.F. Serotonin 1B receptor stimulation enhances dopamine-mediated reinforcement . Psychopharmacology 128, 150– 160 (1996)

    Article  CAS  Google Scholar 

  35. Roberts, D.C.S. Self-administration of GBR 12909 on a fixed and progressive ratio schedule in rats. Psychopharmacology 111, 202–206 (1993)

    Article  CAS  Google Scholar 

  36. Lamb, R.J. & Griffiths, R.R. Self-administration in baboons and the discriminative stimulus effects in rats of bupropion, nomifensine, diclofensine and imipramine. Psychopharmacology 102 , 183–190 (1990)

    Article  CAS  Google Scholar 

  37. Howell, L.L. & Byrd, L.D. Serotonergic modulation of the behavioral effects of cocaine in the squirrel monkey. J. Pharmacol. Exp. Ther . 275, 1551–1559 ( 1995)

    CAS  PubMed  Google Scholar 

  38. Roberts, D.C.S., Corcoran, M.E. & Fibiger, H.C. On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacol. Biochem. Behav. 6, 615–620 ( 1977)

    Article  CAS  Google Scholar 

  39. Roberts, D.C.S., Koob, G.F., Klonoff, P. & Fibiger, H.C. Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacol. Biochem. Behav. 12, 781–787 (1980)

    Article  CAS  Google Scholar 

  40. Pettit, H.O., Ettenburg, A., Bloom, F.E. & Koob, G.F. Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 84, 167–173 (1984)

    Article  CAS  Google Scholar 

  41. Roberts, D.C.S., Loh, E.A., Baker, G.B. & Vickers, G. Lesions of the central serotonin systems affect responding on a progressive ratio schedule reinforced either by intravenous cocaine or by food. Pharmacol. Biochem. Behav. 49, 177–182 (1994)

    Article  CAS  Google Scholar 

  42. Walsh, S.L. & Cunningham, K.A. Serotonergic mechanisms involved in the discriminative stimulus, reinforcing and subjective effects of cocaine . Psychopharmacology 130, 41– 58 (1997)

    Article  CAS  Google Scholar 

  43. Caroll, M.E., Lac. S.T., Asencio, M. & Kargh, R. Fluoxetine reduces intravenous cocaine self-administration in rats. Pharmacol. Biochem. Behav. 35, 237–244 ( 1990)

    Article  Google Scholar 

  44. Peltier, R. & Schenk, S. Effects of serotonergic manipulations on cocaine self-administration in rats. Psychopharmacology 110, 390–394 (1993)

    Article  CAS  Google Scholar 

  45. Loh, E.A. & Roberts, D.C.S. Break-points on a progressive ratio schedule reinforced by intravenous cocaine increase following depletion of forebrain serotonin. Psychopharmacology 101, 262–266 (1990)

    Article  CAS  Google Scholar 

  46. Rocha, B.A., Ator, R., Emmett-Oglesby, M.W. & Hen, R. Intravenous cocaine self-administration in mice lacking 5-HT1B receptors. Pharmacol. Biochem. Behav. 57, 1–6 (1997)

    Article  Google Scholar 

  47. Rocha, B.A. et al. Increased vulnerability to cocaine in mice lacking the serotonin 1B receptor . Nature, in press (1998)

  48. Franklin, K.B.J. & Paxinos, G. The mouse brain in stereotaxic coordinates. (Academic Press, San Diego, 1996)

    Google Scholar 

  49. Bendotti, C., Servadio, A., Forloni, G., Angeretti, N. & Samanin, R. Increased tryptophan hydroxylase mRNA in raphe serotoninergic neurons spared by 5,7-dihydroxytryptamine. Mol. Brain Res. 8, 343–348 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Julie K. Staley for comments regarding autoradiography and Anthony LaMantia for advice. Fabio Fumagalli is a visiting fellow from Center of Neuropharmacology, Institute of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy. Raul R. Gainetdinov is a visiting fellow from Institute of Pharmacology RAMS, Baltiyskaya, 8, 125315, Moscow, Russia. This work was supported in part by the National Institutes of Health, U.S. Public Health Service grants MH-40159 (MCG), DA-10457A (BAR), ES-09248 (GWM), DA 05749 (SRJ), and unrestricted gifts from Bristol Myers Squibb and Zeneca Pharmaceuticals (MGC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc G. Caron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocha, B., Fumagalli, F., Gainetdinov, R. et al. Cocaine self-administration in dopamine-transporter knockout mice. Nat Neurosci 1, 132–137 (1998). https://doi.org/10.1038/381

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing