Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Context-dependent secondary structure formation of a designed protein sequence

Abstract

PROTEIN secondary structures have been viewed as fundamental building blocks for protein folding, structure and design. Pre-vious studies indicate that the propensities of individual amino acids to form particular secondary structures are the result of a combination of local conformational preferences1,2 and non-local factors3–7. To examine the extent to which non-local factors influence the formation of secondary structural elements, we have designed an 11-amino-acid sequence (dubbed the 'chameleon' sequence) that folds as an α-helix when in one position but as a β-sheet when in another position of the primary sequence of the IgG-binding domain of protein G (GUI). Both proteins, chameleon-α and chameleon-β, are folded into structures similar to native GB1, as judged by several biophysical criteria. Our results demonstrate that non-local interactions can determine the secondary structure of peptide sequences of substantial length. They also support views of protein folding that favour tertiary interactions as dominant determinants of structure (for example, see refs 8,9).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chakrabartty, A. & Baldwin, R. L. Adv. Prat. Chem. 46, 141–176 (1995).

    CAS  Google Scholar 

  2. Bryson, J. W. et al. Science 270, 935–941 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Garratt, R. C., Taylor, W. R. & Thornton, J. M. FEBS Lett. 188, 59–62 (1985).

    Article  CAS  Google Scholar 

  4. Heinz, D. W., Baase, W. A., Dahlquist, F. W. & Matthews, B. W. Nature 361, 561–564 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Minor, D. L. Jr & Kim, P. S. Nature 371, 264–267 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Xiong, H., Buckwalter, B. L., Shieh, H.-M. & Hecht, M. H. Proc. natn. Acad. Sci. U.S.A. 92, 6349–6353 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Smith, C. K. & Regan, L. Science 270, 980–982 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Dill, K. A. et al. Prot. Sci. 4, 561–602 (1995).

    Article  CAS  Google Scholar 

  9. Lumb, K. J., Carr, C. M. & Kim, P. S. Biochemistry 33, 7361–7367 (1994).

    Article  CAS  Google Scholar 

  10. Privalov, P. L. A. Rev. Biophys. biophys. Chem. 18, 47–69 (1989).

    Article  CAS  Google Scholar 

  11. Lumb, K. J. & Kim, P. S. Biochemistry 34, 8642–8648 (1995).

    Article  CAS  Google Scholar 

  12. Gronenborn, A. M. & Clore, G. M. J. molec. Biol. 223, 331–335 (1993).

    Article  Google Scholar 

  13. Dyson, H. J. & Wright, P. E. A. Rev. Biophys. biophys. Chem. 20, 519–538 (1991).

    Article  CAS  Google Scholar 

  14. Carr, C. M. & Kim, P. S. Cell 73, 823–832 (1993).

    Article  CAS  Google Scholar 

  15. Bullough, P. A., Hughson, F. M., Skehel, J. J. & Wiley, D. C. Nature 371, 37–43 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Goldsmith, E. J. & Mottonen, J. Structure 2, 241–244 (1994).

    Article  CAS  Google Scholar 

  17. Kabsch, W. & Sander, C. Proc. natn. Acad. Sci. U.S.A. 81, 1075–1078 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Wilson, I. A., Haft, D. H., Getzoff, E. D., Tainer, J. A. & Lerner, R. A. Proc. natn. Acad. Sci. U.S.A. 82, 5255–5259 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Argos, P. J. molec. Biol. 197, 331–348 (1987).

    Article  CAS  Google Scholar 

  20. Cohen, B. I., Presnell, S. R. & Cohen, F. E. Prot. Sci. 2, 2134–2145 (1993).

    Article  CAS  Google Scholar 

  21. Gronenborn, A. M. et al. Science 253, 657–661 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Minor, D. L. Jr & Kim, P. S. Nature 367, 660–663 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Achari, A. et al. Biochemistry 31, 10449–10457 (1991).

    Article  Google Scholar 

  24. Alexander, P., Fahnestock, S., Lee, T., Orban, J. & Bryan, P. Biochemistry 31, 3597–3603 (1992).

    Article  CAS  Google Scholar 

  25. Wüthrich, K. NMR of Proteins and Nucleic Acids (Wiley, New York, 1986).

    Book  Google Scholar 

  26. Bai, Y., Milne, J. S., Mayne, L & Englander, S. W. Proteins 17, 75–86 (1993).

    Article  CAS  Google Scholar 

  27. Orban, J., Alexander, P., Bryan, P. & Khare, D. Biochemistry 34, 15291–15300 (1995).

    Article  CAS  Google Scholar 

  28. Fahnestock, S. R., Alexander, P., Filpula, D. & Nagle, J. in Bacterial immunoglobin-binding Proteins (ed. Boyle. M. D. P.) (Academic, San Diego, 1990).

    Google Scholar 

  29. Woody, R. W. in The Peptides (Academic, New York, 1985).

    Google Scholar 

  30. Chou, P. Y. & Fasman, G. D. Biochemistry 13, 211–222 (1973).

    Article  Google Scholar 

  31. Schuster, T. M. & Laue, T. M. Modern Analytical Ultracentrifugation (Birkhäuser, Boston, 1994).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minor, D., Kim, P. Context-dependent secondary structure formation of a designed protein sequence. Nature 380, 730–734 (1996). https://doi.org/10.1038/380730a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380730a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing