Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Terminal Proterozoic reorganization of biogeochemical cycles

Abstract

THE Proterozoic aeon (2,500-540 million years ago) saw episodic increases in atmospheric oxygen content1, the evolution of multicel-lular life2,3 and, at its close, an enormous radiation of animal diversity3. These profound biological and environmental changes must have been linked, but the underlying mechanisms have been obscure. Here we show that hydrocarbons extracted from Proterozoic sediments in several locations worldwide are derived mainly from bacteria or other heterotrophs rather than from photosyn-thetic organisms. Biodegradation of algal products in segmenting matter was therefore unusually complete, indicating that organic material was extensively reworked as it sank slowly through the water column. We propose that a significant proportion of this reworking will have been mediated by sulphate-reducing bacteria, forming sulphide. The production of sulphide and consumption of oxygen near the ocean surface will have inhibited transport of O2 to the deep ocean. We find that preservation of algal-lipid skeletons improves at the beginning of the Cambrian, reflecting the increase in transport by rapidly sinking faecal pellets. We suggest that this rapid removal of organic matter will have increased oxygenation of surface waters, leading to a descent of the O2–sulphide interface to the sea floor and to marked changes in the marine environment, ultimately contributing to the Cambrian radiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Des Marais, D. J., Strauss, H., Summons, R. E. & Hayes, J. M. Nature 359, 605–609 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Lipps, T. H. & Signor, P. W. Origin and Early Evolution of Metazoans (Plenum, New York, 1992).

    Book  Google Scholar 

  3. Conway-Morris, S. Nature 361, 219–225 (1993).

    Article  ADS  Google Scholar 

  4. Hoering, T. C. Yb Carnegie Instn. Wash. 64, 215–218 (1965).

    Google Scholar 

  5. Hoering, T. C. Yb Carnegie Instn. Wash 65, 365–372 (1966).

    Google Scholar 

  6. Hieshima, G. B. thesis, Indiana Univ. (1992).

  7. Hayes, J. M., Lambert, I. B. & Strauss, H. in The Proterozoic Biosphere (eds Schopf, J. W. & Klein, C.) 129–132 (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  8. Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K. & Lambert, I. B. Nature 321, 832–838 (1986).

    Article  ADS  CAS  Google Scholar 

  9. DeNiro, M. J. & Epstein, S. A. Geochim. cosmochim. Acta 42, 495–506 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Hayes, J. M. Mar. Geol. 113, 111–125 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Fowler, S. W. & Knauer, G. A. Prog. Oceanogr. 16, 147–194 (1986).

    Article  ADS  Google Scholar 

  12. Tegelaar, E. W., Derenne, S., Largeau, C. & de Leeuw, J. W. Geochim. cosmochim Acta 53, 3103–3107 (1989).

    Article  ADS  CAS  Google Scholar 

  13. de Leeuw, J. W. & Largeau, C. in Organic Geochemistry (eds Engel, M. H. & Macko, S. A.) 23–72 (Plenum, New York, 1993).

    Book  Google Scholar 

  14. Beukes, N. J. & Klein, C. in The Proterozoic Biosphere (eds Schopf, J. W. & Klein, C.) 147–151 (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  15. Holland, H. D. in The Proterozoic Biosphere (eds Schopf, J. W. & Klein, C.) 169–172 (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  16. Knoll, A. H., Fairchild, I. J. & Swett, K. Palaios 8, 512–525 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Holser, W. T., Schidlowski, M., Mackenzie, F. T. & Maynard, J. B. in Chemical Cycles in the Evolution of the Earth (eds Gregor, C. B., Garrels, R. M., Mackenzie, F. T. & Maynard, J. B.) 105–174 (Wiley, New York, 1988).

    Google Scholar 

  18. Lambert, I. B. & Donnelly, T. H. in Stable Isotope Composition and Fluid Process in Mineralization (eds Herbert, H. K. & Ho, S. E.) 260–268 (Univ. Western Australia, Perth, 1990).

    Google Scholar 

  19. Chambers, L. A. & Trudinger, P. A. Geomicrobiol. J. 1, 249–293 (1979).

    Article  CAS  Google Scholar 

  20. Ross, G. M., Bloch, J. D. & Krouse, H. R. Precambr. Res. (in the press).

  21. Lien, A. Yu. in The Global Biogeochemical Sulphur Cycle (eds Ivanov, M. V. & Freney, J. R.) 95–128 (Wiley, Chichester, 1983).

    Google Scholar 

  22. Alt, J. C., Shanks, W. C. & Jackson, M. C. Earth planet. Sci. Lett. 119, 477–494 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Bender, M. L. J. geophys. Res. 95, 22243–22252 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Derry, L. A., Kaufman, A. J. & Jacobsen, S. B. Geochim. cosmochim. Acta 56, 1317–1329 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Ingall, E. D., Bustin, R. M. & Cappellen, P. V. Geochim. cosmochim. Acta 57, 303–316 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Notholt, A. J. G. & Jarvis, I. (eds) Phosphorite Research and Development (Spec. Publ. 52, Geol Soc., London, 1990).

  27. Brasier, M. D. J. geol. Soc. Lond. 149, 621–629 (1992).

    Article  CAS  Google Scholar 

  28. Knoll, A. H. & Walter, M. R. Nature 356, 673–678 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Knoll, A. H. in Origin and Early Evolution of Metazoans (eds Lipps, T. H. & Signor, P. W.) 53–84 (Plenum, New York, 1992).

    Book  Google Scholar 

  30. Crimes, P. P. & Droser, M. L. A. Rev. Ecol. Syst. 23, 339–360 (1992).

    Article  Google Scholar 

  31. Raff, R. A. & Raff, O. C. Nature 228, 1003–1004 (1970).

    Article  ADS  CAS  Google Scholar 

  32. Runnegar, B. Paleogeogr. Palaeoclimatol. Palaeoecol. 97, 97–111 (1991).

    Article  ADS  Google Scholar 

  33. Moore, T. B. & Schopf, J. W. in The Proterozoic Biosphere (eds Schopf, J. W. & Klein, C.) 605–693 (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  34. Guthrie, J. M. thesis, Indiana Univ. (1994).

  35. Bjorøy, M., Hall, P. B., Hustad, E. & Williams, J. A. Org. Geochem. 19, 89–105 (1992).

    Article  Google Scholar 

  36. Collister, J. W. thesis, Indiana Univ. (1992).

  37. Hollander, D. J., Sinninghe Damsté, J. S., Hayes, J. M., de Leeuw, J. W. & Huc, A. Y. Org. Geochem. 20, 1253–1263 (1993).

    Article  CAS  Google Scholar 

  38. Schoell, M. Hwang, R. J., Carlson, R. M. K. & Welton, J. E. Org. Geochem. 21, 713–719 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logan, G., Hayes, J., Hieshima, G. et al. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376, 53–56 (1995). https://doi.org/10.1038/376053a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376053a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing