Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance

Abstract

IN linear information theory, electrical engineering and neurobiology, random noise has traditionally been viewed as a detriment to information transmission. Stochastic resonance (SR) is a nonlinear, statistical dynamics whereby information flow in a multistate system is enhanced by the presence of optimized, random noise1–4. A major consequence of SR for signal reception is that it makes possible substantial improvements in the detection of weak periodic signals. Although SR has recently been demonstrated in several artificial physical systems5,6, it may also occur naturally, and an intriguing possibility is that biological systems have evolved the capability to exploit SR by optimizing endogenous sources of noise. Sensory systems are an obvious place to look for SR, as they excel at detecting weak signals in a noisy environment. Here we demonstrate SR using external noise applied to crayfish mechanoreceptor cells. Our results show that individual neurons can provide a physiological substrate for SR in sensory systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fauve, S. & Heslot, F. Phys. Lett. 97A, 5–7 (1983).

    Article  ADS  Google Scholar 

  2. McNamara, B. & Wiesenfeld, K. Phys. Rev. A39, 4854–4869 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Jung, P. & Hänggi, P. Europhys. Lett. 8, 505–510 (1989).

    Article  ADS  Google Scholar 

  4. Gammaitoni, L., Marchesoni, F., Meneschella-Saetta, E. & Santucci, S. Phys. Rev. Lett. 62, 349–352 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Moss, F., Bulsara, A. & Shlesinger, M. (eds) J. stat. Phys. 70, 1–514 (1993).

  6. Moss, F. in An Introduction to Some Contemporary Problems in Statistical Physics (ed. Weiss, G.) (SIAM, Philadelphia, in the press).

  7. Benzi, R., Sutera, S. & Vulpiani, A. J. Phys. A14, L453–L457 (1981).

    ADS  Google Scholar 

  8. Nicolis, C. Tellus 34, 1–9 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  9. Benzi, R., Parisi, G., Sutera, A. & Vulpiani, A. Tellus 34, 10–16 (1982).

    Article  ADS  Google Scholar 

  10. Winograd, I. et al. Science 258, 255–260 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Bush, B. M. H. & Laverack, M. S. in The Biology of Crustacea Vol. 3 (ed. Bliss, D. E.) 399–468 (Academic, New York, 1982).

    Book  Google Scholar 

  12. Mellon, D. J. exp. Biol. 40, 137–148 (1963).

    Google Scholar 

  13. Wiese, K. J. Neurophysiol. 39, 816–833 (1976).

    Article  CAS  Google Scholar 

  14. Moore, G., Perkel, D. & Segundo, J. A. Rev. Physiol. 28, 493–522 (1966).

    Article  CAS  Google Scholar 

  15. Bano, W. Jr, Fuentes, J. & Segundo, J. Biol. Cybern. 31, 99–110 (1978).

    Article  Google Scholar 

  16. Narins, P. & Wagner, I. J. acoust. Soc. Am. 85, 1255–1265 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Kaplan, E. & Barlow, R. B. Jr Nature 286, 393–394 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Croner, L., Purpura, L. & Kaplan, E. Proc. natn. Acad. Sci. U.S.A. 90, 8128–8130 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Rose, J., Brugge, J., Anderson, D. & Hind, J. J. Neurophysiol. 30, 769–793 (1967).

    Article  CAS  Google Scholar 

  20. Knight, B. W. J. gen. Physiol. 59, 734–766 (1972).

    Article  CAS  Google Scholar 

  21. Gerstein, G. & Mandelbrot, B. Biophys. J. 4, 41–68 (1964).

    Article  CAS  Google Scholar 

  22. Stein, R. B. Biophys. J. 5, 173–184 (1965).

    Article  ADS  CAS  Google Scholar 

  23. Glass, L., Graves, C., Petrillo, G. & Mackey, M. C. J. theor. Biol. 86, 455–475 (1980).

    Article  CAS  Google Scholar 

  24. Glass, L. & Mackey, M. C. J. math. Biol. 7, 339–352 (1979).

    Article  MathSciNet  CAS  Google Scholar 

  25. Knight, B. W. J. gen. Physiol. 59, 767–778 (1972).

    Article  CAS  Google Scholar 

  26. Longtin, A., Bulsara, A. & Moss, F. Phys. Rev. Lett. 67, 656–659 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Chialvo, D. & Apkarian, V. J. stat. Phys. 70, 375–392 (1993).

    Article  ADS  Google Scholar 

  28. Ditzinger, T. & Haken, H. Biol. Cybern. 63, 453–456 (1990).

    Article  CAS  Google Scholar 

  29. van Harreveld, A. D. Proc. Soc. exp. Biol. Med. 34, 428–432 (1936).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douglass, J., Wilkens, L., Pantazelou, E. et al. Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365, 337–340 (1993). https://doi.org/10.1038/365337a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365337a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing