Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for an essential non-Watson–Crick interaction between the first and last nucleotides of a nuclear pre-mRNA intron

Abstract

NUCLEAR pre-messenger RNA splicing requires the action of five small nuclear (sn) RNAs, Ul, U2, U4, US and U6, and more than 50 proteins1,2. The mechanistic similarity of nuclear pre-mRNA splicing and group II self-splicing suggests that many of the central processes of nuclear pre-mRNA splicing are based on RNA–RNA interactions3,4. To understand the mechanism of pre-mRNA splicing, the interactions, and their temporal relationships, that occur between the snRNAs and the pre-mRNA during splicing must be identified. Several snRNA–snRNA5–9 and snRNA–intron9–12 interactions have been demonstrated but the putative RNA-based interactions that recognize the AG dinucleotide at the 3′ splice site during 3′ cleavage and exon ligation are unknown. We report here the reciprocal suppression between 5′ and 3′ splice site mutations in the yeast actin intron, and propose that the 3′ splice site is positioned for 3′ cleavage and exon ligation, at least in part, through a non-Watson–Crick interaction between the guanosines at the 5′ and 3′ splice sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Guthrie, C. Science 253, 157–162 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Green, M. A. Rev. Cell Biol. 7, 559–599 (1991).

    Article  CAS  Google Scholar 

  3. Guthrie, C. Am. Zool. 29, 557–567 (1989).

    Article  CAS  Google Scholar 

  4. Cech, T. & Bass, B. A. Rev. Biochem. 55, 599–630 (1986).

    Article  CAS  Google Scholar 

  5. Hashimoto, C. & Steitz, J. Nucleic Acids Res. 12, 3283–3293 (1984).

    Article  CAS  Google Scholar 

  6. Brow, D. & Guthrie, C. Nature 334, 213–218 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Wu, J. & Manley, J. L. Nature 352, 818–823 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Hausner, T., Giglio, L. M. & Weiner, A. W. Genes Dev. 4, 2146–2156 (1990).

    Article  CAS  Google Scholar 

  9. Wassarman, D. & Steitz, J. Science 257, 1918–1925 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Zhaung, Y. & Weiner, A. Cell 46, 827–835 (1986).

    Article  Google Scholar 

  11. Parker, R., Siliciano, P. & Guthrie, C. Cell 49, 229–239 (1987).

    Article  CAS  Google Scholar 

  12. Reich, C. I., VanHoy, R. W., Porter, G. L. & Wise, J. A. Cell 69, 1159–1169 (1992).

    Article  CAS  Google Scholar 

  13. Vijayraghavan, U. et al. EMBO J. 5, 1683–1695 (1986).

    Article  CAS  Google Scholar 

  14. Smith, C. W. J., Porro, E. B., Patton, J. G. & Nadal-Ginard, B. Nature 342, 243–247 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Reed, R. Genes Dev. 3, 2113–2123 (1989).

    Article  CAS  Google Scholar 

  16. Newman, A. J. & Norman, C. Cell 68, 734–754 (1992).

    Google Scholar 

  17. Aebi, M., Hornig, H., Padgett, R., Reiser, J. & Weissmann, C. Cell 47, 555–565 (1986).

    Article  CAS  Google Scholar 

  18. Newman, A. J., Ogden, R. C. & Abelson, J. Cell 42, 335–342 (1985).

    Article  CAS  Google Scholar 

  19. Fouser, L. A. & Friessen, J. D. Cell 45, 81–93 (1986).

    Article  CAS  Google Scholar 

  20. Michel, F., Hanna, M., Green, R., Bartel, D. P. & Szostak, J. W. Nature 342, 391–395 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Michel, F., Ellington, A. D., Couture, S. & Szostak, J. W. Nature 347, 578–580 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Bartel, D. P., Zapp, M. L., Green, M. R. & Szostak, J. W. Cell 67, 529–536 (1991).

    Article  CAS  Google Scholar 

  23. Pyle, A. M., Murphy, F. L. & Cech, T. R. Nature 358, 123–128 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Jackson, I. J. Nucleic Acids Res. 19, 3795–3798 (1991).

    Article  CAS  Google Scholar 

  25. Moore, M. J. & Sharp, P. A. Science 256, 992–997 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Cech, T. R. Science 236, 1532–1535 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Inoue, T., Sullivan, F. X. & Cech, T. R. J. molec. Biol. 189, 143–159 (1986).

    Article  CAS  Google Scholar 

  28. Lesser, C. F. & Guthrie, C. Genetics (in the press).

  29. Schena, M., Picard, D. & Yamamoto, K. R. Meth. Enzym. 194, 389–398 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, R., Siliciano, P. Evidence for an essential non-Watson–Crick interaction between the first and last nucleotides of a nuclear pre-mRNA intron. Nature 361, 660–662 (1993). https://doi.org/10.1038/361660a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361660a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing