Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons

Abstract

Glutamate application at synapses between hippocampal neurons in culture produces long-term potentiation of the frequency of spontaneous miniature synaptic currents, together with long-term potentiation of evoked synaptic currents. The mini frequency potentiation is initiated postsynaptically and requires activity of NMDA receptors. Although the frequency of unitary quanta! responses increases strongly, their amplitude remains little changed with potentiation. Tests of postsynaptic responsiveness rule out recruitment of latent glutamate receptor clusters. Thus, postsynaptic induction can lead to enhancement of presynaptic transmitter release. The sustained potentiation of mini frequency is expressed even in the absence of Ca2+ entry into presynaptic terminals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bliss, T. V. P. & Lomo, T. J. Physiol., Lond. 232, 331–356 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bliss, T. V. P. & Lynch, M. in Long-term Potentiation: From Biophysics to Behavior (eds Landfield, P. W. & Deadwyler, S. A.) 3–72 (Liss, New York, 1988).

    Google Scholar 

  3. Brown, T. H., Chapman, P. F., Kairiss, E. W. & Keenan, C. L. Science 242, 724–728 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Siegelbaum, S. A. & Kandel, E. R. Curr. Opin. Neurobiol. 1, 113–120 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Collingridge, G. L. & Singer, W. Trends Pharmac. Sci. 11, 290–296 (1990).

    Article  CAS  Google Scholar 

  6. Ascher, P. & Nowak, L. Trends Neurosci. 10, 284–288 (1988).

    Article  Google Scholar 

  7. Mayer, M. L. & Westbrook, G. L. Prog. Neurobiol. 28, 197–276 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. & Schottler, F. Nature 305, 719–721 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Malenka, R. C., Kauer, J. A., Zucker, R. S. & Nicoll, R. A. Science 242, 81–84 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Muller, W. & Connor, J. A. Nature 354, 73–76 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Hu, G. Y. et al. Nature 328, 426–429 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Malinow, R., Schulman, H. & Tsien, R. W. Science 245, 862–866 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Malenka, R. C. et al. Nature 340, 554–557 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Bredt, D. S. & Snyder, S. H. Neuron 8, 3–11 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Dolphin, A. C., Errington, M. L. & Bliss, T. V. P. Nature 297, 496 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Malinow, R. & Tsien, R. W. Nature 346, 177–180 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Bekkers, J. M. & Stevens, C. F. Nature 346, 724–729 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Voronin, L. L., Kuhnt, U. & Gusev, A. G. Neurosci. Res. Commun. 8, 87–94 (1991).

    Google Scholar 

  19. Malinow, R. Science 252, 722–724 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Foster, T. C. & McNaughton, B. L. Hippocampus 1, 79–91 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Redman, S. J. Physiol. Revs 70, 165–198 (1990).

    Article  CAS  Google Scholar 

  22. Larkman, A., Stratford, K. & Jack, J. J. B. Nature 350, 344–347 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Clements, J. Nature 353, 596 (1991).

    Article  Google Scholar 

  24. Edwards, F. Nature 350, 271–272 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Korn, H., Fassnacht, C. & Faber, D. S. Nature 350, 282 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Korn, H. & Faber, D. S. Trends Neurosci. 14, 439–445 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Gally, J. A., Montague, P. K., Reeke, G. N. & Edelman, G. M. Proc. natn. Acad. Sci. U.S.A. 87, 3547–3555 (1990).

    Article  ADS  CAS  Google Scholar 

  28. del Castillo, J. & Katz, B. J. Physiol. 124, 560–573 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martin, A. R. in Handbook of Physiology: The Nervous System Vol. 1 (ed. Kandel, E. R.) 329–355 (American Physiological Society, Bethesda, 1977).

    Google Scholar 

  30. Edwards, F. A., Konnerth, A. & Sakmann, B. J. Physiol. 430, 213–249 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lev-Tov, A. & Rahamimoff, R. J. Physiol. 309, 247–273 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baxter, D., Bittner, G. D. & Brown, T. H. Proc. natn. Acad. Sci. U.S.A. 80, 347–7351 (1985).

    Google Scholar 

  33. Dale, N. & Kandel, E. R. J. Physiol. 421, 203–222 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin, J.-W., Sugimori, M., Llinas, R. R., McGuinness, T. L. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 87, 8257–8261 (1990).

    Article  ADS  CAS  Google Scholar 

  35. Shapira, R., Silberberg, S. D., Ginsburg, S. & Rahamimoff, R. Nature 325, 58–60 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Segal, M. Neurosci. Lett. 101, 169–174 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Finch, D. M. & Jackson, M. B. Brain Research 518, 269–273 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Longenecker, H. E. Jr. Hurlbut, W. P., Mauro, A. & Clark, A. W. Nature 225, 701–705 (1970).

    Article  ADS  PubMed  Google Scholar 

  39. Brown, T. H., Wong, R. K. S. & Prince, D. A. Brain Res. 177, 194–199 (1979).

    Article  CAS  PubMed  Google Scholar 

  40. Bekkers, J. M. & Stevens, C. F. Nature 341, 230–233 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Manabe, T., Renner, P. & Nicoll, R. A. Nature 355, 50–55 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Lynch, G. & Baudry, M. Hippocampus 1, 9–14 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Amaral, D. G., Ishizuka, N. & Claiborne, B. Prog. Brain Res. 83, 1–11 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol., Lond 334, 33–46 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Malenka, R. C. Neuron 6, 53–60 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Forsythe, I. D. & Clements, J. D. J. Physiol., Lond. 429, 1–16 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lester, R. A. & Jahr, C. E. Neuron 4, 741–749 (1990).

    Article  CAS  PubMed  Google Scholar 

  48. Chernevskaya, N. I., Obukhov, A. G. & Krishtal, O. Nature 349, 418–420 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Fatt, P. & Katz, B. J. Physiol., Lond. 117, 109–128 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hubbard, J. I., Jones, S. F. & Landau, E. M. J. Physiol., Lond. 197, 639–657 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Davies, S. N., Lester, R. A., Reymann, K. & Collingridge, G. L. Nature 338, 500–503 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Choi, D. W. Trends Neurosci. 11, 465–468 (1988).

    Article  CAS  PubMed  Google Scholar 

  53. Hartley, D. M. & Choi, D. W. J. Pharmal. exp. Ther. 250, 752–758 (1989).

    CAS  Google Scholar 

  54. Schuman, E. & Madison, D. V. Science 254, 1503–1506 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. O'Dell, T., Hawkins, R. D., Kandel, E. R. & Arancio, O. Proc. natn. Acad. Sci. U.S.A. 88, 11285–11289 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malgaroli, A., Tsien, R. Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons. Nature 357, 134–139 (1992). https://doi.org/10.1038/357134a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357134a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing