Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Revised budget for the oceanic uptake of anthropogenic carbon dioxide

Abstract

TRACER-CALIBRATED models of the total uptake of anthropogenic CO2 by the world's oceans give estimates of about 2 gigatonnes carbon per year1, significantly larger than a recent estimate2 of 0.3-0.8 Gt C yr-1 for the synoptic air-to-sea CO2 influx. Although both estimates require that the global CO2 budget must be balanced by a large unknown terrestrial sink, the latter estimate implies a much larger terrestrial sink, and challenges the ocean model calculations on which previous CO2 budgets were based. The discrepancy is due in part to the net flux of carbon to the ocean by rivers and rain, which must be added to the synoptic air-to-sea CO2 flux to obtain the total oceanic uptake of anthropogenic CO2. Here we estimate the magnitude of this correction and of several other recently proposed adjustments to the synoptic air-sea CO2 exchange. These combined adjustments minimize the apparent inconsistency, and restore estimates of the terrestrial sink to values implied by the modelled oceanic uptake.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Houghton, J. T., Jenkins, G. J. & Ephraums, J. J. Climate Change, The IPCC Scientific Assessment (Cambridge University Press, 1990).

    Google Scholar 

  2. Tans, P. P., Fung, I. Y. & Takahashi, T. Science 247, 1431–1438 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Siegenthaler, U. & Oeschger, H. Tellus B39, 140–154 (1987).

    Article  Google Scholar 

  4. Sarmiento, J. L., Siegenthaler, U. & Orr, J. C. J. geophys. Res. 97, 3621–3645 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Toggweiler, J. R., Dixon, K. & Bryan, K. J. geophys. Res. 94, 8243–8264 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Keeling, C. D., Piper, S. C. & Heimann, M. in Aspects of Climate Variability in the Pacific and the Western Americas, Geophys. Monogr. 55 (ed, Peterson, D. H.) 305–363 (American Geophysical Union, Washington DC, 1989).

    Google Scholar 

  7. Schluessel, P., Emery, W. J., Grassl, H. & Mammen, T. J. geophys. Res. 95, 13341–13356 (1990).

    Article  ADS  Google Scholar 

  8. Smethie, W. M. Jr., Takahashi, T. & Chipman, D. W. J. geophys. Res. 90, 7007–7022 (1985)

    Article  ADS  Google Scholar 

  9. Liss, P. & Merlivat, L. in The Role of Air-Sea Exchange in Geochemical Cycling (ed. Buat-Menard, P.) 113–127 (Reidel, Dordrecht, 1986).

    Book  Google Scholar 

  10. Crutzen, P. J. & Gidel, L. T. J. geophys. Res. 88, 6641–6661 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Enting, I. G. & Mansbridge, J. V. Tellus B43, 156–170 (1991).

    Article  ADS  Google Scholar 

  12. Sabine, C. L. & Mackenzie, F. T. Int. J. Energy Envir. Econ. 1, 119–127 (1991).

    Google Scholar 

  13. Wollast, R. & Mackenzie, F. T. Climate and Geosciences: A Challenge for Science and Society in the 21st Century, 453–473 (Kluwer, Dordrecht, 1989).

    Book  Google Scholar 

  14. Maier-Reimer, E. & Hasslemann, K. Clim. Dynam. 2, 63–90 (1987).

    Article  ADS  Google Scholar 

  15. Mackenzie, F. T. & Garrels, R. M. Am. J. Sci. 264, 507–525 (1966).

    Article  ADS  CAS  Google Scholar 

  16. Gerlach, T. M. Eos 72, 249–255 (1991).

    ADS  Google Scholar 

  17. Berner, R. A. Am. J. Sci. 282, 451–473 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Romankevich, E. A. Geochemistry of Organic Matter in the Ocean (Springer, New York, 1984).

    Book  Google Scholar 

  19. Burton, J. D. in SCOPE 21: The Major Biogeochemical Cycles and their Interactions (eds Bolin, B. & Cook, R. B.) 408–410 ((Wiley, New York, 1983).

    Google Scholar 

  20. Buat-Menard, P., Riley, J. P., Chester, R. & Duce, R. A. in Chemical Oceanography, vol. 10 (eds Riley, J. P., Chester, R. & Duce, R. A.) 251–279 (Academic, London, 1989).

    Google Scholar 

  21. Broecker, W. S. & Peng, T.-H. Tracers in the Sea (Eldigio, Palisades, New York, 1982).

    Google Scholar 

  22. Broecker, W. S. & Peng, T.-H. Nature 356, 587–589 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Berner, R. A., Lasaga, A. C. & Garrels, R. M. Am. J. Sci. 283, 641–683 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Berner, E. K. & Berner, R. A. The Global Water Cycle (Prentice-Hall, Englewood Cliffs, 1987).

    MATH  Google Scholar 

  25. Meybeck, M. Am. J. Sci. 287, 401–428 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Drever, J. I., Li, Y.-H. & Maynard, J. B. in Chemical Cycles in the Evolution of the Earth (eds Gregor, C. B. et al.) 17–53 (Wiley, New York, 1988).

    Google Scholar 

  27. Schlesinger, W. H. & Melack, J. M. Tellus 33, 172–187 (1981).

    Article  ADS  CAS  Google Scholar 

  28. Meybeck, M. Flux of Organic Carbon by Rivers to the Oceans 219–269 (National Technical Information Service, Springfield, Virginia, 1981).

    Google Scholar 

  29. Milliman, J. D., Xie Quinchun & Yang Zuosheng Am. J. Sci. 284, 824–834 (1984).

    Article  ADS  CAS  Google Scholar 

  30. Ittekkot, V. Nature 332, 436–438 (1988).

    Article  ADS  CAS  Google Scholar 

  31. Meybeck, M. Physical and Chemical Weathering in Geochemical Cycles 247–272 (Kluwer, Dordrecht, 1988).

    Book  Google Scholar 

  32. Spitzy, A. & Leenheer, J. in SCOPE: Biogeochemistry of Major World Rivers (eds Degens, E. T., Kempe, S. & Richey, J. E.) 213–232 (Wiley, New York, 1991).

    Google Scholar 

  33. Degens, E. T., Kempe, S. & Richey, J. E. in SCOPE 42: Biogeochemistry of Major World Rivers (eds Degens, E. T., Kempe, S. & Richey, J. E.) 323–347 (Wiley, New York, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarmiento, J., Sundquist, E. Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356, 589–593 (1992). https://doi.org/10.1038/356589a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356589a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing