Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polymorphism in red photopigment underlies variation in colour matching

Abstract

GENETIC variation of human senses within the normal range probably exists but usually cannot be investigated in detail for lack of appropriate methods. The study of subtle perceptual differences in red–green colour vision is feasible since both photo-pigment genotypes and psychophysical phenotypes can be assessed by sophisticated techniques. Red–green colour vision in humans is mediated by two different visual pigments: red (long-wavelength sensitive) and green (middle-wavelength sensitive). The apoproteins of these highly homologous photopigments are encoded by genes on the X chromosome1. Colour matches of males with normal colour vision fall into two main groups that appear to be transmitted by X-linked inheritance2–6. This difference in colour matching is likely to reflect small variations in the absorption maxima of visual pigments7–11 suggesting the presence of two common variants of the red and/or green visual pigments that differ in spectral positioning5,6. We report that a common single amino-acid polymorphism (62% Ser, 38% Ala) at residue 180 of the X-linked red visual pigment explains the finding of two major groups in the distribution of colour matching among males with normal colour vision.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nathans, J., Thomas, D. & Hogness, D. S. Science 232, 193–202 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Waaler, G. Nature 215, 406 (1967).

    Article  ADS  CAS  Google Scholar 

  3. Eisner, A. & MacLeod, D. I. A. J. opt. Soc. Am. 71, 705–718 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Elsner, A. E. & Burns, S. A. J. opt. Soc. Am. 4, P123 (1987).

    ADS  Google Scholar 

  5. Neitz, J. & Jacobs, G. H. Nature 323, 623–625 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Neitz, J. & Jacobs, G. H. Vision Res. 30, 621–636 (1990).

    Article  CAS  Google Scholar 

  7. Stiles, W. S. & Burch, J. M. Optics Acta 6, 1–26 (1959).

    Article  ADS  Google Scholar 

  8. Alpern, M. & Wake, T. J. Physiol., Lond. 266, 595–612 (1977).

    Article  CAS  Google Scholar 

  9. Alpern, M. & Pugh, E. N. J. Physiol., Lond. 266, 613–646 (1977).

    Article  CAS  Google Scholar 

  10. Alpern, M. & Moeller, J. J. Physiol., Lond. 266, 647–675 (1977).

    Article  CAS  Google Scholar 

  11. Alpern, M. J. Physiol. Lond. 288, 85–105 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lutze, M., Cox, N. J., Smith, V. C. & Pokorny, J. Vision Res. 30, 149–162 (1990).

    Article  CAS  Google Scholar 

  13. Nathans, J., Piantanida, T. P., Eddy, R. L., Shows, T. B. & Hogness, D. S. Science 232, 203–210 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Dartnall, H. J. A., Bowmaker, J. K. & Mollon, J. D. Proc. R. Soc. B220, 115–130 (1983).

    ADS  CAS  Google Scholar 

  15. Smith, V. C., Pokorny, J. & Stuart, J. S. Vision Res. 16, 1087–1094 (1976).

    Article  CAS  Google Scholar 

  16. Neitz, M., Neitz, J. & Jacobs, G. M. Science 252, 971–973 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Mollon, J. D., Bowmaker, J. K. & Jacobs, G. H. Proc. R. Soc. B222, 373–399 (1984).

    ADS  CAS  Google Scholar 

  18. Merbs, S. L. & Nathans, J. Nature 356, 433–435 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Orita, M., Iwahana, H., Kanazawa, K., Hayashi, K. & Sekiya, T. Proc. natn. Acad. Sci. U.S.A. 86, 2766–2770 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Pokorny, J., Smith, V. C. & Lutze, M. Documenta ophth. 52, 512–522 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winderickx, J., Lindsey, D., Sanocki, E. et al. Polymorphism in red photopigment underlies variation in colour matching. Nature 356, 431–433 (1992). https://doi.org/10.1038/356431a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356431a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing