Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bacterial photosynthesis in surface waters of the open ocean

Abstract

The oxidation of the global ocean by cyanobacterial oxygenic photosynthesis, about 2,100 Myr ago1, is presumed to have limited anoxygenic bacterial photosynthesis to oceanic regions that are both anoxic and illuminated2,3. The discovery of oxygen-requiring photosynthetic bacteria about 20 years ago4 changed this notion, indicating that anoxygenic bacterial photosynthesis could persist under oxidizing conditions. However, the distribution of aerobic photosynthetic bacteria in the world oceans, their photosynthetic competence and their relationship to oxygenic photoautotrophs on global scales are unknown. Here we report the first biophysical evidence demonstrating that aerobic bacterial photosynthesis is widespread in tropical surface waters of the eastern Pacific Ocean and in temperate coastal waters of the northwestern Atlantic. Our results indicate that these organisms account for 2–5% of the photosynthetic electron transport in the upper ocean.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical fluorescence kinetic transients at 685 nm (planktonic photosynthesis) and 880 nm (bacterial photosynthesis).
Figure 2: Diel cycle in bacterial photosynthesis (filled symbols) and planktonic photosynthesis (open symbols).
Figure 3: Reaction-centre-normalized photosynthetic electron fluxes in phytoplankton (open symbols) and aerobic phototrophs (filled symbols) calculated from Equation 1 under clear sky, and photosynthetically available radiation (PAR) conditions (continuous line).
Figure 4: Spatial distribution of photosynthetic bacteria and oxygenic phytoplankton in the Pacific Ocean along 104° W in November 1999.

Similar content being viewed by others

References

  1. Rye, R. & Holland, H. D. Paleosols and the evolution of atmospheric oxygen: a critical review. Am. J. Sci. 298, 621–672 (1998).

    Article  CAS  ADS  Google Scholar 

  2. Falkowski, P. G. & Raven, J. A. Aquatic Photosynthesis (Blackwell, Oxford, 1997).

    Google Scholar 

  3. Blankenship, R. E., Madigan, M. T. & Bauer, C. E. (eds). Anoxygenic Photosynthetic Bacteria (Kluwer, Dordrecht, 1995).

    Book  Google Scholar 

  4. Shiba, T., Simidu, U. & Taga, N. Distribution of aeorobic bacteria which contain bacteriochlorophyll a. Appl. Environ. Microbiol. 38, 43– 48 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Harashima, H., Shiba, T., Totsuka, T., Simidu, U. & Toga, N. Occurrence of bacteriochlorophyll a in a strain of aerobic heterotrophic bacterium. Agric. Biol. Chem. 42, 1627–1628 (1987).

    Google Scholar 

  6. Harashima, K., Shiba, T. & Murata, N. Aerobic Photosynthetic Bacteria. (Springer, Berlin, 1989).

    Google Scholar 

  7. Shimada, K. in Anoxygenic Photosynthetic Bacteria (eds. Blankenship, R. E., Madigan, M. T. & Bauer, C. E.) 105–122 (Kluwer, Dordrecht, 1995).

    Google Scholar 

  8. Woese, C. R. et al. The phylogeny of purple bacteria; The alpha subdivision. Syst. Appl. Microbiol. 5, 315–326 (1984).

    Article  CAS  Google Scholar 

  9. Yurkov, V. et al. Phylogenetic positions of novel areobic, bacteriochlorophyll a containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int. J.Syst. Bacteriol 44, 427–434 ( 1994).

    Article  CAS  Google Scholar 

  10. Nishimura, Y. et al. DNA relatedness and chemotaxonomic feature of aerobic bacteriochlorophyll-containing bacteria isolated from coast of Australia. J. Gen. Appl. Microbiol. 40, 287–296 ( 1994).

    Article  CAS  Google Scholar 

  11. Yurkov, V. V. & Beatty, T. Aeorobic anoxygenic phototrophic bacteria. Microbiol. Mol. Biol. Rev. 62, 695–724 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Noguchi, T., Hayashi, H., Shimida, K., Takaichi, S. & Tasumi, M. In vivo states and function of carotenoids in an aerobic photosynthetic bacterium, Erythrobacter longus. Photosynth. Res. 31, 21–30 (1992).

    Article  CAS  Google Scholar 

  13. Garcia, D., Mathis, P. & Vermeglio, A. Kinetics of electron transfer between the tetrahemic cytochrome and special pair in isolated reaction centers of Roseobacter denitrificans. Photosynth. Res. 55, 331–335 (1998).

    Article  CAS  Google Scholar 

  14. Schwarze, C., Carluccio, A. V., Venturolli, G. & Labahn, A. Photo-induced cyclic electron transfer involving cytochrome bc1 complex and reaction center in the obligate aerobic phototroph Roseobacter denitrificans . Eur. J. Biochem. 267, 422– 433 (2000).

    Article  CAS  Google Scholar 

  15. Shiba, T. Utilization of the light energy by the strictly aerobic bacterium Erythrobacter sp. OCh114. J. Gen. Appl. Microbiol. 30, 1313–1320 (1984).

    Article  Google Scholar 

  16. Yurkov, V. V., Krieger, S., Stackebrandt, E. & Beatty, J. T. Citromicrobium bathymonarium, a novel aeorobic bacterium isolated from deep sea hydrothermal vent plume waters that contains photosynthetic pigment-protein complexes. J. Bacteriol. 181, 4517– 4525 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Nisbet, E. G., Cana, J. R. & Van Dover, C. L. Origins of photosynthesis. Nature 373, 479–480 (1995).

    Article  CAS  ADS  Google Scholar 

  18. Van Dover, C. L., Reynolds, G. T., Chave, A. D. & Tyson, J. A. Light at deep sea hydrothermal vents. Geophys. Res. Lett. 23, 2049–2052 (1996).

    Article  ADS  Google Scholar 

  19. Kolber, Z. S., Prasil, O. & Falkowski, P. G. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim. Biophys. Acta 1367, 88–106 (1998).

    Article  CAS  Google Scholar 

  20. Prasil, O., Adir, N. & Ohad, I. in The photosystems: Stucture, Function and Molecular Biology (ed. Barber, J. R.) 295–348 (Elsevier, New York, 1992).

    Google Scholar 

  21. Binder, B. Cell cycle regulation and the timing of chromosome replication in marine Synechococcus (cyanobacteria) during light- and nitrogen-limited growth. J. Phycol. 36, 120–126 (2000).

    Article  CAS  Google Scholar 

  22. Behrenfeld, M. J. & Kolber, S. Z. Widespread iron limitation of phytoplankton in the South Pacific Ocean. Science 283, 840–843 ( 1999).

    Article  CAS  ADS  Google Scholar 

  23. Kolber, Z. & Falkowski, P. G. Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol. Oceanogr. 38, 1646–1665 (1993).

    Article  CAS  ADS  Google Scholar 

  24. Durnford, D. G. & Falkowski, P. G. Chloroplast redox regulation of nuclear gene transcription during photoacclimation. Photosynt. Res. 53, 229–241 (1997).

    Article  CAS  Google Scholar 

  25. Shiba, T., Shioi, Y., Takamiya, K., Sutton, D. C. & Wilkinson, C. R. Distribution and physiology of aerobic bacteria containing bacteriochlorophyll a on the east and west coast of Australia. Appl. Environ. Microbiol. 57, 295– 300 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yurkov, V. & Beatty, T. Isolation of aerobic anoxygenic photosynthetic bacteria from black smoker plume waters of the Juan de Fuca Ridge in the Pacific Ocean. Appl. Environ. Microbiol. 64, 337 –341 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wiessner, W. in Photobiology of Microorganisms (ed. Halldall, P.) 95– 133 (Wiley-Interscience, London, 1970).

    Google Scholar 

  28. Droop, M. R. in Algal Physiology and Biochemistry (ed. Stewart, W. D. P.) 531– 599 (Blackwell Scientific, Berkeley, 1974).

    Google Scholar 

Download references

Acknowledgements

This research was support by the National Science Foundation and the Office of Naval Research. We thank C. Vetriani, R. Lutz, J. Henderson, G. Ananyev and D. Klimov for technical assistance and the crew of the Alvin for their cooperation. We thank P. Minnett for the SST data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Falkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolber, Z., Van Dover, C., Niederman, R. et al. Bacterial photosynthesis in surface waters of the open ocean. Nature 407, 177–179 (2000). https://doi.org/10.1038/35025044

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35025044

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing