Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Acetylcholine analogue stimulates DNA synthesis in brain-derived cells via specific muscarinic receptor subtypes

Abstract

LITTLE is known about the factors which regulate the growth and development of the mammalian brain. Although proliferation of neuronal cells ceases relatively early in development, certain types of glial cells proliferate and differentiate mainly perinatally1. In the perinatal period, the ability of acetylcholine to stimulate phosphoinositide (PI) hydrolysis in brain reaches peak levels2, and indeed the stable acetylcholine analogue carbachol can stimulate PI hydrolysis of primary neonatal astroglial cells3. As PI hydrolysis is thought to be important in the regulation of cell proliferation4-6, we investigated whether cellular DNA synthesis can be induced by carbachol. Our results show that carbachol stimulates DNA synthesis via muscarinic acetylcholine receptors (mAChRs), in primary astrocytes derived from perinatal rat brain, in an age-dependent fashion. Carbachol is also mitogenic in certain brain-derived astrocytoma and neuroblastoma cell lines, as well as in Chinese hamster ovary (CHO) cells expressing recombinant muscarinic receptors. DNA synthesis is strongly activated by car-bachol in those brain-derived cell lines and transfected CHO cells that express mAChR subtypes which activate PI hydrolysis efficiently, and poorly activated in cells expressing mAChR sub-types which only weakly activate PI hydrolysis. These results strongly support a role for acetylcholine in regulating astroglial cell growth in the developing brain, and indicate that the specificity of acetylcholine-induced cell proliferation may be determined by the expression of those mAChR subtypes which activate PI hydro-lysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Raff, M. C. Science 243, 1450–1455 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Balduini, W., Murphy, S. D. & Costa, L. G. J. Pharmac. exp. Ther. 241, 421–427 (1987).

    CAS  Google Scholar 

  3. Pierce, B. et al. J. Neurochem. 45, 1534–1539 (1985).

    Article  Google Scholar 

  4. Rozengurt, E. Science 234, 161–166 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Berridge, M. J. A. Rev. Biochem. 56, 159–193 (1987).

    Article  CAS  Google Scholar 

  6. Nishizuka, Y. Nature 334, 661–665 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Bottenstein, J. E. & Sato, G. H. Proc. natn. Acad. Sci. U.S.A. 76, 514–517 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Bingami, A., Eng, L. F., Dahl, D. & Uyeda, C. T. Brain Res. 43, 429–435 (1972).

    Article  Google Scholar 

  9. Ashkenazi, A., Peralta, E. G., Winslow, J. W., Ramachandran, J. & Capon, D. J. Cold Spring Harb. Symp. quant. Biol. LIII, 263–272 (1988).

    Article  Google Scholar 

  10. Kubo, T. et al. Nature 323, 411–416 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Kubo, T. et al. FEBS Lett. 209, 367–372 (1986).

    Article  CAS  Google Scholar 

  12. Peralta, E. G. et al. Science 236, 600–605 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Peralta, E. G. et al. EMBO J. 6, 3923–3929 (1987).

    Article  CAS  Google Scholar 

  14. Bonner, T. I., Buckley, N. J., Young, A. C. & Brann, M. R. Science 237, 527–532 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Bonner, T. I., Young, A. C., Brann, M. R. & Buckley, N. J. Neuron 1, 403–410 (1988).

    Article  CAS  Google Scholar 

  16. Fukuda, K. et al. Nature 321, 623–625 (1987).

    Article  ADS  Google Scholar 

  17. Ashkenazi, A. et al. Science 238, 672–675 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Peralta, E. G., Ashkenazi, A., Winslow, J. W., Ramachandran, J. & Capon, D. J. Nature 334, 434–438 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Fukuda, K. et al. Nature 335, 355–358 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Stein, R., Pinkas-Karamaski, R. & Sokolovsky, M. EMBO J. 7, 3031–3035 (1988).

    Article  CAS  Google Scholar 

  21. Neher, E., Marty, A., Fukuda, K., Kubo, T. & Numa, S. FEBS Lett. 240, 88–94 (1988).

    Article  CAS  Google Scholar 

  22. Bujo, H. et al. FEBS Lett. 240, 95–100 (1988).

    Article  CAS  Google Scholar 

  23. Conklin, B. R. et al. Proc. natn. Acad. Sci. U.S.A. 85, 8698–8702 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Ashkenazi, A., Peralta, E. G., Winslow, J. W., Ramachandran, J. & Capon, D. J. Cell 56, 487–493 (1989).

    Article  CAS  Google Scholar 

  25. Maeda, A., Kubo, T., Mishina, M. & Numa, S. FEBS Lett. 239, 339–342 (1988).

    Article  CAS  Google Scholar 

  26. Fisher, S. K., Klinger, P. D. & Agranoff, B. W. J. biol. Chem. 258, 7358–7363 (1983).

    CAS  PubMed  Google Scholar 

  27. Brown, J. H. & Brawn, S. L. J. biol. Chem. 259, 3777–3781 (1984).

    CAS  PubMed  Google Scholar 

  28. Williams, B. P., Abney, E. R. & Raff, M.C. Devl. Biol. 112, 126–134 (1985).

    Article  CAS  Google Scholar 

  29. Seuwem, K., Magnaldo, I. & Pouyssegur, J. Nature 335, 254–256 (1988).

    Article  ADS  Google Scholar 

  30. Vincentini, L. M. & Villereal, M. L. Biochem. biophys. Res. Commun. 123, 377–384 (1984).

    Article  Google Scholar 

  31. Jackson, T. R., Blair, L. A. C., Marshall, J., Goedert, M. & Hanley, M. R. Nature 335, 437–440 (1988).

    Article  ADS  CAS  Google Scholar 

  32. Kimelberg, H. K. & Norenberg, M. D. Scient. Am. 260, 66–76 (1989).

    Article  CAS  Google Scholar 

  33. Coyle, J. T. & Yamamura, H. I. Brain. Res. 118, 429–440 (1976).

    Article  CAS  Google Scholar 

  34. Masters, S. B., Harden, T. K. & Brown, J. J. Molec. Pharmac. 26, 149–155 (1984).

    CAS  Google Scholar 

  35. Lichtshtein, D., Boone, G. & Blume, A. J. Cyc. Nucleotide Res. 5, 367–375 (1979).

    CAS  Google Scholar 

  36. Berridge, M. J., Downes, C. P. & Hanley, M. R. Biochem. J. 206, 587–595 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashkenazi, A., Ramachandran, J. & Capon, D. Acetylcholine analogue stimulates DNA synthesis in brain-derived cells via specific muscarinic receptor subtypes. Nature 340, 146–150 (1989). https://doi.org/10.1038/340146a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340146a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing