Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oxidation of aromatic contaminants coupled to microbial iron reduction

Abstract

THE contamination of sub-surface water supplies with aromatic compounds is a significant environmental concern1,2. As these contaminated sub-surface environments are generally anaerobic, the microbial oxidation of aromatic compounds coupled to nitrate reduction, sulphate reduction and methane production has been studied intensively1–7. In addition, geochemical evidence suggests that Fe(III) can be an important electron acceptor for the oxidation of aromatic compounds in anaerobic groundwater. Until now, only abiological mechanisms for the oxidation of aromatic compounds with Fe(III) have been reported8–12. Here we show that in aquatic sediments, microbial activity is necessary for the oxidation of model aromatic compounds coupled to Fe(III) reduction. Furthermore, a pure culture of the Fe(III)-reducing bacterium GS-15 can obtain energy for growth by oxidizing benzoate, toluene, phenol or p-cresol with Fe(III) as the sole electron acceptor. These results extend the known physiological capabilities of Fe(III)-reducing organisms and provide the first example of an organism of any type which can oxidize an aromatic hydrocarbon anaerobically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berry, D. F., Francis, A. J. & Bollag, J.-M. Microbiol. Rev. 51, 43–59 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wilson, B. H., Smith, B. G. & Rees, J. F. Environ. Sci. Technol. 20, 997–1002 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Young, L. Y. & Frazer, A. C. Geomicrobiol. J. 5, 261–293 (1987).

    Article  CAS  Google Scholar 

  4. Suflita, J. M., Gibson, S. A. & Beeman, R. E. J. ind Microbiol. 3, 179–194 (1988).

    Article  CAS  Google Scholar 

  5. Kuhn, E. P., Zeyer, J., Eicher, P. & Schwarzenbach, R. P. Appl. environ. Microbiol. 54, 490–496 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vogel, T. M. & Gribic-Galic, D. Appl. environ. Microbiol. 53, 254–260 (1988).

    Google Scholar 

  7. Major, D. W., Mayfield, C. I. & Barker, J. F. Ground Water 26, 8–14 (1988).

    Article  CAS  Google Scholar 

  8. Stone, A. T., in Geochemical Processes at Mineral Surfaces (eds Davis, J. A. & Hayes, K. F.) 446–461 (Am. Chem. Soc. Symp. Series 323, 1986).

    Google Scholar 

  9. Stone, A. T. & Morgan, J. J., in Aquatic Surface Chemistry (ed. Stumm, W.) 221–254 (Wiley, New York, 1987).

    Google Scholar 

  10. Lakind, J. S. & Stone, A. T. Eos 69, 369 (1988).

    Google Scholar 

  11. Lehmann, R. G., Cheng, H. H. & Harsh, J. B. Soil Sci. Soc. Am. J. 51, 352–356 (1987).

    Article  ADS  CAS  Google Scholar 

  12. McBride, M. B. Soil Sci. Soc. Am. J. 51, 1466–1472 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Van Breeman, N. in Iron in Soils and Clay Minerals, NATO ASI Series C (eds Stucki, J. W. et al.) 797–823 (Reidel, Boston, 1988).

    Book  Google Scholar 

  14. Ponnamperuma, F. N. Adv. Agron. 24, 29–96 (1972).

    Article  CAS  Google Scholar 

  15. Baedecker, M. J. & Back, W. J. Hydrol. 43, 393–414 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Champ, D. R., Gulens, J. & Jackson, R. E. Can. J. Earth Sci. 16, 12–23 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Hult, M. F. in U.S. Geological Survey Water Resources Investigations Report 84-4188 (ed. Hult, M. F.) 1–15 (U.S. Geological Survey, 1984).

    Google Scholar 

  18. Eganhouse, R. P., Dorsey, T. F., Phinney, C. S., Baedecker, M. J. & Cozzarelli, I. M. Geological Society of American Annual Meeting Abstracts 19, 652 (1987).

    Google Scholar 

  19. Cozzarelli, I. M., Eganhouse, R. P. & Baedecker, M. J. in U.S. Geological Survey Water Resources Investigation Report 88-4220 (eds Mallard, G. E. & Ragone, S. E.) (U.S. Geological Survey, in the press).

  20. Phillips, E. J. P. & Lovley, D. R. Soil Sci. Soc. Am. J. 51, 938–941 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Lovley, D. R. & Phillips, E. J. P. Appl. environ. Microbiol. 53, 2636–2641 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lovley, D. R. & Goodwin, S. Geochim. cosmochim. Acta 52, 2993–3003 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Baedecker, M. J., Siegel, D. I., Bennett, P. C. & Cozzarelli, I. M. in U.S. Geological Survey Water Resources Investigation Report 88–4220 (eds Mallard, G. E. & Ragone, S. E.) (U.S. Geological Survey, in the press).

  24. Lovley, D. R. & Phillips, E. J. P. Appl. Environ. Microbiol. 52, 751–757 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ghiorse, W. C. in Biology of Anaerobic Microorganisms (ed. Zehnder, A. J. B.) 305–331 (Wiley, New York, 1988).

  26. Lovley, D. R. Geomicrobiol. J. 5, 261–293 (1987).

    Article  Google Scholar 

  27. Lovley, D. R., Stolz, J. F., Nord Jr, G. L. & Phillips, E. J. P. Nature 330, 252–254 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Lovley, D. R. & Phillips, E. J. P. Appl. environ. Microbiol. 54, 1472–1480 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Myers, C. R. & Nealson, K. H. Science 240, 1319–1321 (1988).

    Article  ADS  CAS  Google Scholar 

  30. Lovley, D. R., Phillips, E. J. P. & Lonergan, D. J. Appl. environ. Microbiol. 55, 700–706 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovley, D., Baedecker, M., Lonergan, D. et al. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339, 297–300 (1989). https://doi.org/10.1038/339297a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339297a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing