Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The origin of MHC class II gene polymorphism within the genus Mus

Abstract

The I region of the major histocompatibility complex (MHC) of the mouse (H–2) contains a tightly-linked cluster of highly poly-morphic genes (class II MHC genes) which control immune responsiveness. Speculation on the origin of this polymorphism, which is believed to be essential for the function of the class II proteins in immune responses to disease, has given rise to two hypotheses. The first is that hypermutational mechanisms (gene conversion or segmental exchange) promote the rapid generation of diversity in MHC genes. The alternative is that polymorphism has arisen from the steady accumulation of mutations over long evolutionary peri-ods, and multiple specific alleles have survived speciation (trans-species evolution). We have looked for evidence of 'segmental exchange' and/or 'trans-species evolution' in the class II genes of the genus Mus by molecular genetic analysis of I–Aβ alleles. The results indicate that >90% (28 out of 31) of the alleles examined can be organized into two evolutionary groups both on the basis of restriction site polymorphisms and by the presence or absence of a short interspersed nucleotide element (SINE). Using this SINE sequence as an evolutionary tag, we demonstrate that I–Aβ alleles in these two evolutionary groups diverged at least three million years ago and have survived the speciation events leading to several modern Mus species. Nucleotide sequence comparisons of eight Mus m. domesticus I–Aβ alleles representing all three evolutionary groups indicate that most of the divergence in exon sequences is due to the steady accumulation of mutations that are maintained independently in the different alleles. But segmental exchanges between alleles from different evolutionary groups have also played a role in the diversification of β1, exons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Klein, J. et al. Nature 291, 455–460 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Mengle-Gaw, L. & McDevitt, H. O. A. Rev. Immun. 3, 367–396 (1985).

    Article  CAS  Google Scholar 

  3. Wedeira, G. & Flavell, R. A. EMBO J. 3, 1221–1225 (1984).

    Article  Google Scholar 

  4. Klein, J. in Immunology 80 (eds Fougereau, M. & Dausset, J.) 239–253 (Academic, New York, 1980).

    Google Scholar 

  5. Arden, B. & Klein, J. Proc. natn. Acad. Sci. U.S.A. 79, 2342–2346 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Klein, J. & Figueroa, F. CRC Critical Rev. in Immunol. 6, 295–386 (1987).

    Google Scholar 

  7. Sage, R. D. in The Mouse in Biomedical Research (eds Foster, H. L., Small, J. D. & Fox, J. G.) 1, 40–90 (Academic, New York, 1981).

    Google Scholar 

  8. Ferris, S. D. et al. Genetics 105, 681–721 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Marshall, J. T. in Curr. Topics Microbiol. Immunol. Vol. 127 (eds Potter, M., Nadeau, J. H. & Cancro, M. P.) 12–19 (Springer, Berlin, 1986).

    Google Scholar 

  10. Wakeland, E. K. & Darby, B. R. J. Immun. 131, 3052–3058 (1983).

    CAS  PubMed  Google Scholar 

  11. McConnell, T. J., Darby, B. & Wakeland, E. K. J. Immun. 136, 3076–3084 (1986).

    CAS  PubMed  Google Scholar 

  12. Wakeland, E. K. et al. Immunogenetics 26, 115–119 (1987).

    Article  CAS  Google Scholar 

  13. Nei, M. & Li, W. H. Proc. natn. Acad. Sci. U.S.A. 76, 5269–5273 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Falus, A. et al. Immunogenetics 25, 290–298 (1987).

    Article  CAS  Google Scholar 

  15. Malissen, M., Hunkapillar, T. & Hood, L. Science 221, 750–753 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Larhammar, D. et al. Cell 34, 179–188 (1983).

    Article  CAS  Google Scholar 

  17. Houck, C. M., Rinehart, F. P. & Schmid, C. W. J. molec. Biol. 132, 289–306 (1979).

    Article  CAS  Google Scholar 

  18. Jagadeeswaran, P., Forget, B. G. & Weissman, S. M. Cell 26, 141–142 (1981).

    Article  CAS  Google Scholar 

  19. Bonhomme, F. in Curr. Topics Microbiol. Immunol. Vol. 127 (eds Potter, M., Nadeau, J. H. & Cancro, M. P.) 19–34 (Springer, Berlin, 1986).

    Google Scholar 

  20. Estess, P. et al. Proc. natn. Acad. Sci. U.S.A. 83, 3594–3598 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Acha-Orbea, H. & McDevitt, H. O. Proc. natn. Acad. Sci. U.S.A. 84, 2435–2439 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Duncan, W. R., Wakeland, E. K. & Klein, J. Nature 281, 603–605 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Wakeland, E. K. & Klein J. in Current Trends in Histocompatibility (eds Reisfeld, R. A. & Ferrone, S.) 4, 289–305 (Plenum, New York, 1981).

    Book  Google Scholar 

  24. Duncan, W. R. & Klein, J. Immunogenetics 10, 45–65 (1980).

    Article  CAS  Google Scholar 

  25. Winter, W. R. et al Diabetes 36, Suppl. 1, 22A (Abstract) (1987).

    Article  Google Scholar 

  26. Potts, W. K. et al. in Major histocompatibility genes and their role in immune function (ed. David, C. S.) (Plenum, New York, in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McConnell, T., Talbot, W., McIndoe, R. et al. The origin of MHC class II gene polymorphism within the genus Mus. Nature 332, 651–654 (1988). https://doi.org/10.1038/332651a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332651a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing