Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure refined to 2Å of a nicked DNA octanucleotide complex with DNase I

Abstract

The cutting rates of bovine pancreatic deoxyribonuclease I (DNase I) vary along a given DNA sequence, indicating that the enzyme recognizes sequence-dependent structural variations of the DNA double-helix1,2. In an attempt to define the helical parameters determining this sequence-dependence, we have co-crystallized a complex of DNase I with a self-complementary octanucleotide and refined the crystal structure at 2 Å resolution. This structure confirms the basic features of an early model3,4, namely that an exposed loop of DNase I binds in the minor groove of B-type DNA and that interactions do occur with the backbone of both strands. Nicked octamer duplexes that have lost a dinucleotide from the 3′-end of one strand are hydrogen-bonded across a two-fold axis in the crystal to form a quasi-continuous double helix of 14 base pairs. The DNA 14-mer has a B-type conformation and shows substantial distortion of both local and overall helix parameters, induced mainly by the tight interaction of Y73 and R38 in the unusually wide minor groove. Directly coupled to the widening of the groove by 3Å is a 21.5° bend of the DNA away from the bound enzyme towards the major groove, suggesting that both DNA stiffness and groove width are important in determining the sequence-dependence of the enzyme cutting rate. A second cut of the DNA which is induced by diffusion of Mn2+ into the co-crystals suggests that there are two active sites in DNase I separated by more than 15Å.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lomonossoff, G. P., Butler, P. J. G. & Klug, A. J. molec. Biol. 149, 745–760 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Drew, H. R. & Travers, A. A. Cell 37, 491–502 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. Oefner, C. & Suck, D. J. molec. Biol. 192, 605–632 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Suck, D. & Oefner, C. Nature 312, 620–625 (1986).

    Article  ADS  Google Scholar 

  5. Rossmann, M. G. (ed.) The Molecular Replacement Method (Gordon & Breach, New York, 1972).

  6. Hendrickson, W. A. & Konnert, J. H. in Computing in Crystallography (eds Diamond, R. Ramaseshan, S. & Ventkatesan, K.) 13.01–13.23 (Indian Academy of Science, Bangalore, 1980).

    Google Scholar 

  7. Price, P. A., Stein, W. H. & Moore, S. J. biol. Chem. 244, 929–932 (1969).

    CAS  PubMed  Google Scholar 

  8. Dickerson, R. E. Scient. Am. 249, 86–102 (1983).

    Article  Google Scholar 

  9. Wang, A. H.-J. & Rich, A. in Biological Macromolecules and Assemblies, Vol. 2 (eds McPherson, A. & Jurnak, F.) 128–170 (Wiley, New York, 1985).

    Google Scholar 

  10. Shakked, Z. & Kennard, O. in Biological Macromolecules and Assemblies, Vol. 2 (eds McPherson, A. & Jurnak, F.) 1–36 (Wiley, New York, 1985).

    Google Scholar 

  11. Shakked, Z. & Rabinovich, D. Prog. Biophys. molec. Biol. 47, 159–195 (1986).

    Article  CAS  Google Scholar 

  12. Dickerson, R. E. & Drew, H. R. J. molec. Biol. 149, 761–786 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. Fratini, A. V., Kopka, M. L., Drew, H. R. & Dickerson, R. E. J. biol. Chem. 257, 14686–14707 (1982).

    CAS  PubMed  Google Scholar 

  14. Nelson, H. C. M., Finch, J. T., Luisi, B. F. & Klug, A. Nature 330, 221–226 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Drew, H. R. & Travers, A. A. Nucleic Acids Res. 13, 4445–4467 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ulanovsky, L., Bodner, M., Trifinov, E. N. & Choder, M. Proc. natn. Acad. Set. U.S.A. 83, 862–866 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Diekmann, S. in Nucleic Acids and Molecular Biology Vol. 1 (eds Eckstein, F. & Lilley, D. M.) 138–156 (Springer, Berlin, 1987).

    Book  Google Scholar 

  18. Hogan, M. E. & Austin, R. H. Nature 329, 263–266 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Hochschild, A. & Ptashne, M. Cell 44, 681–687 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. Drew, H. R. & Travers, A. A. J. molec. Biol. 186, 773–790 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Elgin, S. C. R. Cell 27, 413–415 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Price, P. A., Moore, S. & Stein, W. H. J. biol. Chem. 244, 924–928 (1969).

    CAS  PubMed  Google Scholar 

  23. Moore, S. in The Enzymes Vol. 14 (ed. Boyer, P. D.) 281–296 (Academic, New York, 1981).

  24. Price, P. A. J. biol. Chem. 250, 1981–1986 (1975).

    CAS  PubMed  Google Scholar 

  25. Sepersu, E. H., Shortle, D. & Mildvan, A. S. Biochemistry 26, 1289–1300 (1987).

    Article  Google Scholar 

  26. Melgar, E. & Goldthwait, D. A. J. biol. Chem. 243, 4401–4408 (1968).

    CAS  PubMed  Google Scholar 

  27. Melgar, E. & Goldthwait, D. A. J. biol. Chem. 243, 4409–4416 (1968).

    CAS  PubMed  Google Scholar 

  28. Campbell, V. W. & Jackson, D. A. J. biol. Chem. 255, 3726–3735 (1980).

    CAS  PubMed  Google Scholar 

  29. Crowther, R. A. in The Molecular Replacement Method (ed. Rossmann, M. G.) 174–178 (Gordon & Breach, New York, 1972).

    Google Scholar 

  30. Sussmann, J. L., Holbrook, S. R., Church, G. M. & Kim, S. H. Acta Crystallogr. A33, 800–804 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suck, D., Lahm, A. & Oefner, C. Structure refined to 2Å of a nicked DNA octanucleotide complex with DNase I. Nature 332, 464–468 (1988). https://doi.org/10.1038/332464a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332464a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing