Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tracking kinesin-driven movements with nanometre-scale precision

Abstract

Several enzyme complexes drive cellular movements by coupling free energy-liberating chemical reactions to the production of mechanical work1–3. A key goal in the study of these systems is to characterize at the molecular level mechanical events associated with individual reaction steps in the catalytic cycles of single enzyme molecules. Ideally, one would like to measure movements driven by single (or a few) enzyme molecules with sufficient temporal resolution and spatial precision that these events can be directly observed. Kinesin, a force-generating ATPase involved in microtubule-based intracellular organelle transport4–10, will drive the unidirectional movement of microscopic plastic beads along microtubules in vitro4,9. Under certain conditions, a few (≤10) kinesin molecules may be sufficient to drive either bead movement or organelle transport. Here we describe a method for determining precise positional information from light-microscope images. The method is applied to measure kinesin-driven bead movements in vitro with a precision of 1–2 nm. Our measurements reveal basic mechanical features of kinesin-driven movements along the micro-tubule lattice, and place significant constraints on possible molecular mechanisms of movement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eisenberg, E. Lect. Math. Life Sci. 16, 19–59 (1986).

    Google Scholar 

  2. Berg, H. C. & Khan, S. in Mobility and Recognition in Cell Biology (eds Sund, H. & Veeger, C.) 485–497 (de Gruyter, Berlin, 1983).

    Google Scholar 

  3. Johnson, K. A. A. Rev. Biophys. biophys. Chem. 14, 161–188 (1985).

    Article  CAS  Google Scholar 

  4. Vale, R. D., Reese, T. S. & Sheetz, M. P. Cell 42, 39–50 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuznetsov, S. A. & Gelfand, V. I. Proc. natn. Acad. Sci. U.S.A. 83, 8330–8534 (1986).

    Article  Google Scholar 

  6. Cohn, S. A., Ingold, A. L. & Scholey, J. M. Nature 328, 160–163 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Porter, M. E. et al. J. biol. Chem. 262, 2794–2802 (1987).

    CAS  PubMed  Google Scholar 

  8. Khan, S., Schnapp, B. J. & Sheetz, M. P. Biophys. J. 49, 415a (1986).

    Google Scholar 

  9. Vale, R. D. et al. Cell 43, 623–632 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Schroer, T. A., Schnapt, B. J., Rese, T. F. & Sheetz, M. P. (in preparation).

  11. Sheetz, M. P. & Spudich, J. A. Nature 303, 31–35 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Vale, R. D., Schnapp, B. J., Reese, T. S. & Sheetz, M. P. Cell 40, 559–569 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Vale, R. D. & Toyoshima, Y. Y. J. Cell Biol. 105, 96a (1987).

    Google Scholar 

  14. Allen, R. D., Allen, N. S. & Travis, J. L. Cell Motil. 1, 291–302 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. Allen, R. D. A. Rev. Biophys. biophys. Chem. 14, 265–290 (1985).

    Article  CAS  Google Scholar 

  16. Howard, J. & Hudspeth, A. J. Proc. natn. Acad. Sci. U.S.A. 84, 3064–3068 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Schnapt, B. J., Chrise, B. J., Khan, S., Sheetz, M. P. & Rese, T. F. Nature (submitted).

  18. MacDonald, D. K. C. Noise and Fluctuations: An Introduction (Wiley, New York, 1962).

    Google Scholar 

  19. Block, S. M. & Berg, H. C. Nature 309, 470–472 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Khan, S., Meister, M. & Berg, H. C. J. molec. Biol. 184, 645–656 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Amos, L. A. in Microtubules (eds Roberts, K. & Hyams, J. S.) 1–64 (Academic, London, 1979).

    Google Scholar 

  22. Mandelkow, E.-M. & Mandelkow, E. J. molec. Biol. 181, 123–135 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Mandelkow, E-M., Schultheiss, R., Rapp, R., Müller, M. & Mandelkow, E. J. Cell Biol. 102, 1067–1073 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Miller, R. H. & Lasek, R. J. J. Cell Biol. 101, 2181–2193 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Gilbert, S. P., Allen, R. D. & Sloboda, R. D. Nature 315, 245–248 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Amos, L. A. J. Cell Sci. 87, 105–111 (1987).

    CAS  PubMed  Google Scholar 

  27. Koonce, M. P. & Schliwa, M. J. Cell Biol. 100, 322–326 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. Schnapp, B. J., Vale, R. D., Sheetz, M. P. & Reese, T. S. Cell 40, 455–462 (1985).

    Article  CAS  PubMed  Google Scholar 

  29. Allen, R. D. et al. J. Cell Biol. 100, 1736–1752 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Hayden, J. H. & Allen, R. D. J. Cell Biol. 99, 1785–1793 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Langford, G. M., Allen, R. D. & Weiss, D. G. Cell Motil. Cytoskel. 7, 20–30 (1987).

    Article  CAS  Google Scholar 

  32. Ballard, D. H. & Brown, C. M. Computer Vision (Prentice-Hall, Englewood Cliffs, New Jersey, 1982).

    Google Scholar 

  33. Gonzalez, R. C. & Wintz, P. Digital Image Processing (Addison-Wesley, Reading, Massachusetts, 1977).

    MATH  Google Scholar 

  34. Inoué, S. Video Microscopy (Plenum, New York, 1986).

    Book  Google Scholar 

  35. Steuer, E., Vale, R. D., Schnapp, B. J., Rese, T. S. & Sheetz, M. P. J. Cell Biol. 101, 397a (1985).

    Google Scholar 

  36. Berg, H. C. & Block, S. M. J. gen. Microbiol. 130, 2915–2920 (1984).

    CAS  PubMed  Google Scholar 

  37. Schnapp, B. J. Meth. Eniym. 134 561–573 (1986).

    CAS  Google Scholar 

  38. Ellis, G. W. J. Cell Biol. 101, 83a (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelles, J., Schnapp, B. & Sheetz, M. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331, 450–453 (1988). https://doi.org/10.1038/331450a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331450a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing