Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long-term potentiation and NMDA receptors in rat visual cortex

Abstract

In the hippocampus, which is phylogenetically older than the cerebral neocortex, high frequency stimulation of afferent pathways leads to long-term potentiation (LTP) of synaptic transmission1–5. This use-dependent malleability is of considerable interest because it may serve as a substrate for memory processes. However, in the neocortex, whose involvement in learning is undisputed, attempts to demonstrate LTP have remained inconclusive6–8. Here we use intracellular recording techniques to show that LTP can be induced by high frequency stimulation of the optic radiation in slices of the visual cortex of adult rats. We identify as a necessary prerequisite for the induction of LTP the activation of the membrane channel that is associated with the NMDA (N-methyl-D-aspartate) receptor. Selective blockade of this receptor system with DL-2-amino-5-phosphonovalerate consistently prevents LTP as in most hippocampal pathways9–11. In most cortical neurons the activation of the NMDA mechanism and hence the induction of LTP in these experiments requires a concomitant reduction of GABAergic inhibition by low doses of the GABAA antagonist bicuculline. This indicates that in the neocortex the activation threshold of the NMDA-mechanism and consequently the susceptibility to LTP, are strongly influenced by inhibitory processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. 1. Bliss, T. V. P. & Lomo, T. J. PhysioL 232, 331-356 (1973). 2. Schwartzkroin, P. A. & Wester, K. Brain Res. 89, 107-119 (1975). 3. Alger, B. E. & Teyler, T. J. Brain Res. 110, 463-480 (1976). 4. Dunwiddie, T. & Lynch, G. J. Physiol. 276, 353-367 (1978). 5. Andersen, P., Sundberg, S. H., Sveen, O., Swann, J. W. & Wigstrom, H. /. Physiol. 302, 463-482 (1980). 6. Komatsu, Y., Toyama, K., Maeda, J. & Sakaguchi, H. Neurosci. Lett. 26, 269-274 (1981). 7. Lee, K. S. Brain Res. 239, 617-623 (1982). 8. Bindman, L. J., Meyer, T. & Pockett, S. J. Physiol. 386, 90P (1987). 9. Collingridge, G. L., Kehl, S. J. & McLennan, H. / PhysioL 334, 33-46 (1983). 10. Wigstrom, H. & Gustafsson, B. Neurosci. Lett. 44, 327-332 (1984). 11. Harris, E. W., Ganong, A. H. & Cotman, C. W. Brain Res. 323, 132-137 (1984). 12. McCormick, D. A., Connors, B. W., Lighthall, J. W. & Prince D. A. J. Neurophysiol. 54, 782-806 (1985). 13. Connors, B. W., Gutnick, M. J. & Prince, D. A. J. Neurophysiol. 48, 1302-1320 (1982). 14. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Nature 307, 462-465 (1984). 15. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Nature 309, 261-263 (1984). 16. Herron, C. E., Williamson, R. & Collingridge, G. L. Neurosci. Lett. 61, 255-260 (1985). 17. Dingledine, R., Hynes, M. A. & King, G. L. J. Physiol. 380, 175-189 (1986). 18. Hablitz, J. J. & Langmoen, I. A. J. Neurosci. 6, 102-106 (1986). 19. Herron, C. E., Lester, R. A. J., Coan, E. J. & Collingridge, G. L. Neurosci. Lett. 60, 19-23 (1985). 20. Thomson, A. M. J. Physiol. 370, 531-549 (1986). 21. Herron, C. E., Lester, R. A. J., Coan, E. J. & Collingridge, G. L. Nature 322, 265-268 (1986). 22. Wigstrom, H. & Gustafsson, B. Nature 301, 603-604 (1983). 23. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J. & Barker, J. L. Nature 321, 519-522 (1986). 24. Ascher, P. & Nowak, L. /. Physiol. 377, 35P (1986). 25. Wong, R. K. S. & Prince, D. A. Brain Res. 159, 385-390 (1978). 26. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. & Schottler, F. Nature 305,719-721 (1983). 27. Geiger, H. & Singer, W. Expl Brain Res. Ser. 14, 256-270 (1986). 28. Greuel, J. M., Luhmann, H. J. & Singer, W. Devl Brain Res. 34, 141-149 (1987). 29. Kleinschmidt, A., Bear, M. F. & Singer, W. Science 238, 355-358 (1987). 30. Singer, W. in The neural and molecular bases of learning (eds Changeux, J.-P. & Konishi M.) 301-336 (Wiley, Chichester, 1987).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artola, A., Singer, W. Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330, 649–652 (1987). https://doi.org/10.1038/330649a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/330649a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing