Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Scrapie infectivity, fibrils and low molecular weight protein

Abstract

The development of a short incubation model of scrapie (strain 263K), in golden hamsters1,2, has added impetus to the purification of the infectious agent. Our own attempts3 have been based on methods pioneered by Millson4,5 and developed by Prusiner6,7. We present here results indicating that a purification factor of up to 104 with respect to protein may now be possible. Fractions from brain with high infectivity had a sedimentation range of 70–300S and contained an abundance of fibrils closely similar to the scrapie-associated fibrils (SAF) discovered by Merz et al.8,9. Material of molecular weight (Mr) 26,000, which is probably protein, appears to be a major constituent of the fibrils. The association between infectivity and fibrils raises two possibilities: the fibrils are an infectious form of the scrapie agent or they are a pathological response to scrapie infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kimberlin, R. H. & Walker, C. A. J. gen. Virol. 34, 295–304 (1977).

    Article  CAS  Google Scholar 

  2. Kimberlin, R. H. & Walker, C. A. J. gen. Virol. 39, 487–496 (1978).

    Article  CAS  Google Scholar 

  3. Diringer, H., Hilmert, H., Simon, D., Werner, E. & Ehlers, B. Eur. J. Biochem. 134, 555–560 (1983).

    Article  CAS  Google Scholar 

  4. Millson, G. C., Hunter, G. D. & Kimberlin, R. H. in Slow Virus Diseases of Animals and Man (ed. Kimberlin, R. H.) 243–266 (North-Holland, Amsterdam, 1976).

    Google Scholar 

  5. Millson, G. C. & Manning, E. J. in Slow Transmissible Diseases of the Nervous System Vol. 2 (eds Prusiner, S. B. & Hadlow, W. J. ) 409–424 (Academic, New York, 1979).

    Google Scholar 

  6. Prusiner, S. B. et al. Biochemistry 17, 4993–4999 (1978).

    Article  CAS  Google Scholar 

  7. Prusiner, S. B. et al. Proc. natn. Acad. Sci. U.S.A. 78, 6675–6679 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Merz, P. A., Somerville, R. A., Wisniewski, H. M. & Iqbal, K. Acta neuropath. Berl. 54, 63–74 (1981).

    Article  CAS  Google Scholar 

  9. Merz, P. A., Somerville, R. A. & Wisniewski, H. M. in Unconventional Viruses and Diseases of the Central Nervous System (ed. Court, L.) 259–281 (Masson, Paris, 1983).

    Google Scholar 

  10. Diringer, H. & Kimberlin, R. H. Biosci. Rep. 3, 563–568 (1983).

    Article  CAS  Google Scholar 

  11. Bolton, D. C., McKinley, M. P. & Prusiner, S. B. Science 218, 1309–1310 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Prusiner, S. B. et al. Biochemistry 21, 6942–6950 (1982).

    Article  CAS  Google Scholar 

  13. Merz, P. A., Somerville, R. A., Wisniewski, H. M., Manuelidis, L. & Manuelidis, E. E. Nature 306, 474–476 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Bruce, M. E., Dickinson, A. G. & Fraser, H. Neuropath. appl. Neurobiol. 2, 471–478 (1976).

    Article  Google Scholar 

  15. Gelderblom, H., Bauer, H., Frank, H. & Wigand, R. J. gen. Virol. 1, 553–560 (1967).

    Article  CAS  Google Scholar 

  16. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  17. Oakley, B. R., Kirsch, D. R. & Morris, N. R. Analyt. Biochem. 105, 361–363 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diringer, H., Gelderblom, H., Hilmert, H. et al. Scrapie infectivity, fibrils and low molecular weight protein. Nature 306, 476–478 (1983). https://doi.org/10.1038/306476a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306476a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing