Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pseudogenes as a paradigm of neutral evolution

Abstract

On the neutral mutation hypothesis1–3, the rate of nucleotide substitution is expected to be higher for functionally less important genes or parts of genes than for functionally more important genes, as the latter would be subject to stronger purifying (negative) selection2–4. On the other hand, selectionists believe that most nucleotide substitutions are caused by positive darwinian selection5,6, in which case the rate of nucleotide substitution in functionally unimportant genes or parts of genes2,7 is expected to be relatively lower because the mutations in these regions of DNA would not produce any significant selective advantages. Kimura8 and Jukes9 have argued that the higher substitution rate observed at the third positions of codons than at the first two positions supports the neutral mutation hypothesis, as most third-position substitutions are synonymous and do not change the amino acids encoded, although others5,10 have discussed the possibility that third-position substitutions are subject to positive darwinian selection. Recently, Kimura11 noted that the mouse globin pseudogene, ψα3, evolved faster than the normal mouse α1 gene, although he did not compute the substitution rate. Here, we present a method of computing the rate of nucleotide substitution for pseudogenes, and report that the three recently discovered pseudogenes show an extremely high rate of nucleotide substitution. As these pseudogenes apparently have no function, this finding strongly supports the neutral mutation hypothesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kimura, M. Nature 217, 624–626 (1968).

    Article  ADS  CAS  Google Scholar 

  2. King, J. L. & Jukes, T. H. Science 164, 788–798 (1969).

    Article  ADS  CAS  Google Scholar 

  3. Kimura, M. & Ohta, T. Proc. natn. Acad. Sci. U.S.A. 71, 2848–2852 (1974).

    Article  ADS  CAS  Google Scholar 

  4. Dickerson, R. E. J. molec. Evol. 1, 26–45 (1971).

    Article  ADS  CAS  Google Scholar 

  5. Clarke, B. Science 168, 1009–1011 (1970).

    Article  ADS  CAS  Google Scholar 

  6. Milkman, R. Trends biochem. Sci. 1, N152–N154 (1976).

    Article  Google Scholar 

  7. Jukes, T. H. & King, J. L. Nature 231, 114–115 (1971).

    Article  ADS  CAS  Google Scholar 

  8. Kimura, M. Nature 267, 275–276 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Jukes, T. H. J. molec. Evol. 11, 207–209 (1978).

    Google Scholar 

  10. Richmond, R. C. Nature 225, 1025–1028 (1970).

    Article  ADS  CAS  Google Scholar 

  11. Kimura, M. J. molec. Evol. 16, 111–120 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Proudfoot, N. J. Nature 286, 840–841 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Nishioka, Y., Leder, A. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 77, 2806–2809 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Proudfoot, N. J. & Maniatis, T. Cell 21, 537–544 (1980).

    Article  CAS  Google Scholar 

  15. Lacy, E. & Maniatis, T. Cell 21, 545–553 (1980).

    Article  CAS  Google Scholar 

  16. Nishioka, Y. & Leder, P. Cell 18, 875–882 (1979).

    Article  CAS  Google Scholar 

  17. Heindell, H. C. et al. Cell 15, 43–54 (1978).

    Article  CAS  Google Scholar 

  18. Jukes, T. H. & Cantor, C. H. Mammalian Protein Metabolism (ed. Munro, H. N.) 21–123 (Academic, New York, 1969).

    Book  Google Scholar 

  19. Michelson, A. M. & Orkin, S. H. Cell 22, 371–377 (1980).

    Article  CAS  Google Scholar 

  20. Perler, F. et al. Cello 20, 555–566 (1980).

    Article  CAS  Google Scholar 

  21. Kafatos, F. C. et al. Proc. natn. Acad. Sci. U.S.A. 74, 5618–5622 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Miyata, T. & Yasunaga, T. Proc. natn. Acad. Sci. U.S.A. 78, 450–453 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, WH., Gojobori, T. & Nei, M. Pseudogenes as a paradigm of neutral evolution. Nature 292, 237–239 (1981). https://doi.org/10.1038/292237a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/292237a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing