Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Leukaemia disease genes: large-scale cloning and pathway predictions

Abstract

Retroviral insertional mutagenesis in BXH2 and AKXD recombinant inbred mice induces a high incidence of myeloid or B- and T-cell leukaemia1,2 and the proviral integration sites in the leukaemias provide powerful genetic tags for disease gene identification. Some of the disease genes identified by proviral tagging are also associated with human disease3,4,5, validating this approach for human disease gene identification. Although many leukaemia disease genes have been identified over the years, many more remain to be cloned6. Here we describe an inverse PCR (IPCR) method for proviral tagging that makes use of automated DNA sequencing and the genetic tools provided by the Mouse Genome Project, which increases the throughput for disease gene identification. We also use this IPCR method to clone and analyse more than 400 proviral integration sites from AKXD and BXH2 leukaemias and, in the process, identify more than 90 candidate disease genes. Some of these genes function in pathways already implicated in leukaemia, whereas others are likely to define new disease pathways. Our studies underscore the power of the mouse as a tool for gene discovery and functional genomics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the IPCR proviral tagging method.

Similar content being viewed by others

References

  1. Bedigian, H.G., Johnson, D.A., Jenkins, N.A., Copeland, N.G. & Evans, R. Spontaneous and induced leukemias of myeloid origin in recombinant inbred BXH mice. J. Virol. 51, 586–594 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gilbert, D.J., Neumann, P.E., Taylor, B.A., Jenkins, N.A. & Copeland, N.G. Susceptibility of AKXD recombinant inbred mouse strains to lymphomas. J. Virol. 67, 2083–2090 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ogawa, S. et al. Structurally altered Evi-1 protein generated in the 3q21q26 syndrome. Oncogene 13, 183–191 (1996).

    CAS  PubMed  Google Scholar 

  4. Copeland, N.G. & Jenkins, N.A. Myeloid leukemia: disease genes and mouse models. in Animal Models of Cancer Predisposition Syndromes (eds Hiai, H. & Hino, O.) 53–63 (Karger, Basel, 1999).

    Chapter  Google Scholar 

  5. Roberts, T., Chernova, O. & Cowell, J.K. NB4S, a member of the TBC1 domain family of genes, is truncated as a result of a constitutional t(1;10)(p22;q21) chromosome translocation in a patient with stage 4S neuroblastoma. Hum. Mol. Genet. 7, 1169–1178 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Look, A.T. Oncogenic transcription factors in the human acute leukemias. Science 278, 1059–1064 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Silver, J. & Keerikatte, V. Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus. J. Virol. 63, 1924–1928 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sorensen, A.B., Duch, M., Jorgensen, P. & Pedersen, F.S. Amplification and sequence analysis of DNA flanking integrated proviruses by a simple two-step polymerase chain reaction method. J. Virol. 67, 7118–7124 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Valk, P.J.M., Joosten, M., Vankan, Y., Lowenberg, B. & Delwel, R. A rapid RT-PCR based method to isolate complementary DNA fragments flanking retrovirus integration sites. Nucleic Acids Res. 25, 4419–4421 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakamura, T., Largaespada, D.A., Shaughnessy, J.D. Jr, Jenkins, N.A. & Copeland, N.G. Cooperative activation of Hoxa and Pbx1-related genes in murine myeloid leukaemias. Nature Genet. 12, 149–153 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Shannon, K. The Ras signaling pathway and the molecular basis of myeloid leukemogenesis. Curr. Opin. Hematol. 2, 305–308 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Kawasaki, H. et al. A Rap guanine nucleotide exchange factor enriched highly in the basal ganglia. Proc. Natl Acad. Sci. USA 95, 13278–13283 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ebinu, J.O. et al. RasGRP, a Ras guanyl nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs. Science 280, 1082–1086 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. van de Wetering, M., Oosterwegel, M., van Norren, K. & Clevers, H. Sox-4, an Sry-like HMG box protein, is a transcriptional activator in lymphocytes. EMBO J. 12, 3847–3854 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jonkers, J. & Berns, A. Retroviral insertional mutagenesis as a strategy to identify cancer genes. Biochim. Biophys. Acta 1287, 29–57 (1996).

    PubMed  Google Scholar 

  16. Carballo, E., Lai, W.S. & Blackshear, P.J. Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science 281, 1001–1005 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Taylor, G.A. et al. A pathogenetic role for TNF α in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4, 445–454 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Copeland, N.G. & Jenkins, N.A. Development and applications of a molecular genetic linkage map of the mouse genome. Trends Genet. 7, 113–118 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Ward, Y. et al. Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PAC1. Nature 367, 651–654 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Pear, W.S. et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med. 183, 2283–2291 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Rohn, J.L., Lauring, A.S., Linenberger, M.L. & Overbaugh, J. Transduction of Notch2 in feline leukemia virus-induced thymic lymphoma. J. Virol. 70, 8071–8080 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ellisen, L.W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991).

    CAS  PubMed  Google Scholar 

  23. Vitols, S., Gahrton, G., Bjorkholm, M. & Peterson, C. Hypocholesterolaemia in malignancy due to elevated low-density lipoprotein-receptor activity in tumour cells: evidence from studies in patients with leukaemia. Lancet 2, 1150–1154 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Cable, S. et al. Peroxisomes in human colon carcinomas. A cytochemical and biochemical study. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 62, 221–226 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Ericsson, J., Usheva, A. & Edwards, P.A. YY1 is a negative regulator of transcription of three sterol regulatory element-binding protein-responsive genes. J. Biol. Chem. 274, 14508–14513 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Austen, M., Cerni, C., Luscher-Firzlaff, J.M. & Luscher, B. YY1 can inhibit c-Myc function through a mechanism requiring DNA binding of YY1 but neither its transactivation domain nor direct interaction with c-Myc. Oncogene 17, 511–520 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Jenkins, N.A., Copeland, N.G., Taylor, B.A., Bedigian, H.G. & Lee, B.K. Ecotropic murine leukemia virus DNA content of normal and lymphomatous tissues of BXH-2 recombinant inbred mice. J. Virol. 42, 379–388 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Feinberg, A.P. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Mucenski, M.L., Taylor, B.A., Jenkins, N.A. & Copeland, N.G. AKXD recombinant inbred strains: models for studying the molecular genetic basis of murine lymphomas. Mol. Cell. Biol. 6, 4236–4243 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luo, G., Ivics, Z., Izsvak, Z. & Bradley, A. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 95, 10769–10773 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. O'Sullivan for technical assistance; D. Gilbert for help with the IB mapping; and H.C. Morse and M.C. Dean for helpful comments. This research was sponsored in part by the National Cancer Institute, DHHS, under contract with ABL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal G. Copeland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Shen, H., Himmel, K. et al. Leukaemia disease genes: large-scale cloning and pathway predictions. Nat Genet 23, 348–353 (1999). https://doi.org/10.1038/15531

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15531

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing