NLRP9b: a novel RNA-sensing inflammasome complex

Cell Research advance online publication 21 July 2017; doi:10.1038/cr.2017.93

Inflammasome sensors recognize pathogens and danger signals and assemble an immune signaling complex, which induces the secretion of pro-inflammatory cytokines IL-1β and IL-18, and pyroptosis. A new study published in *Nature* now describes a new inflammasome sensor, NLRP9b, in intestinal epithelial cells, which in concert with the RNA sensor DHX9, recognize short dsRNA from Rotavirus.

The inflammasome is a complex of cytosolic proteins which aggregate to mediate proteolytic processing of pro-IL-1β and pro-IL-18 and the pore-forming protein gasdermin D, leading to pyroptosis that liberates biologically active IL-1β and IL-18 from the cell. Inflammation and cell death triggered by the inflammasome not only contributes to the host defense against infection, but also regulates the development of inflammatory diseases and cancer [1].

Inflammasome sensors either directly interact with a specific pathogen-associated molecular pattern (PAMP) or danger-associated molecular pattern (DAMP), or respond to a physiological aberration triggered by a PAMP or DAMP [2]. Viral infection of myeloid cells generally leads to activation of the AIM2 or NLRP3 inflammasome. The double-stranded RNA (dsDNA) sensor AIM2 recognizes DNA viruses, whereas the general sensor of stress and damage, NLRP3, recognizes many RNA viruses and even some DNA viruses. How inflammasomes operate in cell types other than myeloid cells in response to viral infection is largely unknown. The dsRNA virus Rotavirus is a clinically important enteric virus which causes diarrhea, dehydration and death in young children [3]. The virus has specific tropism and infects epithelial cells of the small intestine. Although Rotavirus was discovered in the 1970s [4], little is known regarding how host cells infected with this virus trigger an innate immune response.

In a recent study published in *Nature*, Zhu and colleagues identified a cytosolic inflammasome sensor for Rotavirus [5]. The authors first established that infection of suckling mice with Rotavirus induced robust activation of caspase-1 in the ileal tissue, indicating a role for inflammasomes in the pathogenesis of Rotavirus infection. The authors then used RNA sequencing and qPCR analysis to profile the gene expression of NLRs and related proteins in the small intestine and found an elevated expression of NLRs and related proteins in the ileal tissue infected with Rotavirus. They identified the human RNA helicase DHX9 as an interacting partner of human NLRP9 and mouse NLRP9b. For example, endogenous human accessory or mediator proteins expressed in HEK293T cells might have facilitated human NLRP9, but not mouse NLRP9b, in binding RNA and initiating assembly of the inflammasome. Indeed, the authors identified the human RNA helicase DHX9 as an interacting partner of
both human NLRP9 and viral dsRNA. Furthermore, mouse intestinal organoids lacking DHX9 and infected with Rotavirus produced less IL-18 and were more resistant to pyroptosis compared with wild-type organoids, confirming a role for DHX9 in the activation of the NLRP9b inflammasome (Figure 1) [5].

Identification of NLRP9b as a new inflammasome-initiating sensor raises many new and exciting questions. What are the biological functions of NLRP9b in cell types other than enterocytes? Although expressed in oocytes, ovaries and embryos, NLRP9b is not involved in early embryonic development [7]. Does NLRP9b recognize other RNA viruses? Given that DHX9 binds Alu elements of transcribed regions of host genes [8], how does DHX9 distinguish viral dsRNA and host-derived RNA? Previous studies by the Flavell and Fikrig groups have shown that NLRP6 cooperated with the RNA helicase DHX15 in mediating the recognition of viral RNA, contributing to the host defense against the ssRNA virus EMCV [9]. These studies raise the question of whether there is a universal partnership between DHX and NLR family members. Addressing these fundamental questions will provide insights into the biological functions of NLRP9b and pattern recognition receptors in health and disease.

Chinh Ngo¹, Si Ming Man¹

¹Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, 2601, Australia
Correspondence: Si Ming Man
Tel: 61 612 56793
E-mail: siming.man@anu.edu.au

References