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 The discovery of intrinsically disordered proteins (IDP) (i.e., biologically active proteins that do not possess 
stable secondary and/or tertiary structures) came as an unexpected surprise, as the existence of such proteins is 
in contradiction to the traditional “sequence→structure→function” paradigm. Accurate prediction of a protein’s 
predisposition to be intrinsically disordered is a necessary prerequisite for the further understanding of principles 
and mechanisms of protein folding and function, and is a key for the elaboration of a new structural and functional 
hierarchy of proteins. Therefore, prediction of IDPs has attracted the attention of many researchers, and a number 
of prediction tools have been developed. Predictions of disorder, in turn, are playing major roles in directing labora-
tory experiments that are leading to the discovery of ever more disordered proteins, and thereby leading to a positive 
feedback loop in the investigation of these proteins. In this review of algorithms for intrinsic disorder prediction, the 
basic concepts of various prediction methods for IDPs are summarized, the strengths and shortcomings of many of 
the methods are analyzed, and the difficulties and directions of future development of IDP prediction techniques are 
discussed.
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Introduction

The traditional “sequence → structure → function” 
model for describing protein activity states that the amino 
acid sequence determines the higher structures of a pro-
tein molecule, including its secondary and tertiary con-
formations, as well as quaternary complexes and further 
states that the formation of a definite ordered structure 
represents the foundation for the function of the protein. 
If particular conditions, such as acid, urea, or high tem-
perature, cause a protein to lose its unique and ordered 
structure, then it loses its ability to carry out function and 
is considered to have become denatured. The first state-

ment of this concept that denaturation arises from loss of 
structure was made by Hsien Wu almost eight decades 
ago [1, 2].

For more than five decades, researchers have been 
discovering individual proteins that possess no definite 
ordered three-dimensional structure but still play impor-
tant biological roles. The discovery rate for such proteins 
has been increasing continually and has become espe-
cially rapid during the last decade [3]. The discovery and 
characterization of these proteins is becoming one of the 
fastest growing areas of protein science. 

Many such proteins with no unique structure are in-
volved in key biological processes including cell cycle 
control, regulation, recognition, and signaling [4-8]. 
Some researchers believe that structural flexibility and 
plasticity originating from the lack of a definite ordered 
three-dimensional structure represents a major functional 
advantage for these proteins. These proteins are able to 
interact with and bind to a broad range of ligands, includ-
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ing partners such as themselves or other proteins, mem-
branes, and nucleic acids [9-12]. These binding events 
typically involve coupled binding and folding [13]. An 
alternative idea was that binding of disordered regions 
depends on conformational selection from the structural 
ensemble [14] perhaps via “pre-formed elements” [15] 
that dominate the ensemble. Recently, it has been sug-
gested that protein-protein interactions actually involve 
a combination of coupled binding and folding and con-
formational selection [16]. With regard to protein-protein 
interactions, papers have appeared recently that follow 
the structural transitions as these highly flexible regions 
associate with their partners [17]. Further study shows 
that the same flexible region of a given protein can fold 
differently when binding different partners and also that 
different amino acid sequences can use their flexibility 
to fold onto a common binding site on the same protein 
partner [11] just as predicted more than a decade ago [18].

In addition to being rich in binding sites for various 
partners, these regions that lack stable, specific three-di-
mensional structure have also been found to be important 
loci for alternative splicing [19] and for enzyme-driven 
posttranslational modifications such as phosphorylation, 
methylation, or acetylation [8]. Since regions lacking 
structure are rich in binding sites, and since these bind-
ing sites can be readily modulated or eliminated both by 
posttranslational modification and by alternative splicing, 
such regions that don’t form structure are becoming in-
creasingly viewed as crucial both for signaling in unicel-
lular eukaryotic organisms and for signaling diversity in 
multicellular organisms [3]. 

For many examples, the given disordered regions are 
not known to bind to any partner, but they still carry out 
important functions such as providing flexible linkers be-
tween structured domains or providing flexible tails that 
regulate the structured domains [4, 20, 21]. One recent 
study showed that a particular flexible linker maintains 
its length and flexibility across divergent species despite 
having little or no obvious amino acid sequence conser-
vation. Perhaps for this linker, the amino acid composi-
tion is more important than the specific details of the 
sequence [22]. 

Various researchers have used different terms to de-
scribe these proteins and regions, including intrinsically 
disordered [23], intrinsically unstructured [20, 24], na-
tively unfolded [21, 25], natively disordered proteins [26], 
and highly flexible [27, 28]. Some of these proteins and 
regions have been shown to contain partial or transient 
secondary and/or tertiary structural organization [29, 30]. 
Our view is that the terms “unfolded” and “unstructured” 
would be misleading for these partially structured exam-
ples, and “flexible” has been used to describe structured 

regions with high B-factors rather than regions lacking 
structure, so herein and elsewhere we use the term intrin-
sically disordered protein (IDP) to cover the wide range 
of possibilities. 

   Figure 1 provides a schematic view of calcineurin, 
a protein that uses a highly flexible region for signaling 
and regulation [23, 31]. This protein is a serine/threonine 
protein phosphatase that contains a catalytic A subunit 
(which is a calcium/calmodulin-activated serine/threo-
nine phosphatase), and a calmodulin-like B subunit. In 
addition, this protein complex contains four disordered 
regions, labeled first to fourth, in the order of decreasing 
length. The lengths of these regions are 95, 35, 13, and 
4 residues, respectively, as determined by missing elec-
tron density in the crystal structures [31]. A 19-residue 
autoinhibitory peptide lies between the first and second 
disordered regions. At low calcium, this autoinhibitory 
peptide is bound to the active site, and the enzyme activ-
ity is turned off. In a signaling event, increased calcium 
leads to activation of calmodulin, which binds to many 
target proteins. Calcineurin is among those proteins that 
have a calmodulin-binding site, and this site is located in 
the first disordered region, as shown in Figure 1. This re-
gion probably becomes helical upon calmodulin binding, 
and the binding leads to displacement of the autoinhibi-
tory peptide, and thereby turns on calcineurin’s serine/
threonine phosphatase activity. 

Calmodulin surrounds its target upon binding, so lo-
cating its binding site in calcineurin within a region of 
disorder makes the target accessible all the way around 
as is required. Therefore, the region of disorder appears 
to be essential to the regulation of calcineurin by calci-
um/calmodulin [23, 31]. Indeed, when experiments have 
been performed on many different calmodulin-activated 
enzymes, the results usually indicate that calmodulin’s 
binding target is located within a trypsin-sensitive region 
[32] that is very likely to be intrinsically disordered. Note 
that calcineurin connects two major signaling pathways, 
calcium/calmodulin signaling with phosphorylation/
dephosphorylation signaling. Not surprisingly, therefore, 
this protein and its relatives play important roles in many 
tissue types and in a wide variety of eukaryotic organ-
isms. 

To account for the constantly increasing number of 
experimentally characterized IDPs, a databank for IDPs, 
named DisProt [33], has been built and is being continu-
ally updated. DisProt introduces 32 kinds of IDP-related 
functional subclasses. Other work indicates that 238 
functions given in SwissProt are associated with IDPs [8], 
but so far DisProt has not been updated to include these 
new results. Figure 2 gives the currently observed num-
ber of IDPs for each functional subclass in DisProt. The 
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biological functions of many IDPs are still unknown. Be-
cause the DisProt entries are randomly acquired, Figure 2 
shouldn’t be used as an indicator of the natural frequency 
of various functions attributed to disordered proteins. In 
fact, this figure only reflects the abundance of functional 
categories based upon the proteins currently annotated in 
DisProt.

Based on a very small number of proteins, Williams 
[34] suggested an approach for using amino acid se-
quence for identifying proteins that form random coils 
rather than globular structures, but this approach was 
never carefully tested. Later, Dunker and Uversky and 
their coworkers independently published the first well-
tested predictors of IDPs [35, 36]. Since then, numerous 
researchers have designed many algorithms to predict 
disordered proteins utilizing specific biochemical proper-
ties and biased amino acid compositions of IDPs. Vari-
ous prediction ideas and different computing techniques 
have been utilized. Many of these predictors including 

PONDR®s [36-41], FoldIndex [42], GlobPlot [43], Dis-
EMBL [44], DISOPRED and DISOPRED2 [45-48], 
DRIPPRED [49], IUPred [50, 51], FoldUnfold [52-54], 
RONN [55], DISpro [56], DisPSSMP and DisPSSMP2 
[57, 58], Spritz [59] and PrDOS [60], etc. can be ac-
cessed via public servers and evaluate intrinsic disorder 
on a per-residue basis. Since the first predictors were 
published, more than 50 predictors of disorder have been 
developed, with their accumulation over time shown in 
Figure 3. The legend to this figure contains references to 
all of the disorder predictors we have been able to find 
so far. In the text below, we discuss many but not all of 
these predictors, where the omissions and limitations in 
our discussions have mostly to do with time and space.

Most of the published predictors are similar in the 
prediction of long disordered regions, but they do dif-
fer significantly in the local details of the outputs. There 
are also binary disorder predictors, e.g., the charge-hy-
dropathy (CH)-plot [35] and the cumulative distribution 

Figure 1 Structure of calcineurin with essential disorder. The A subunit of calcineurin contains a phosphatase domain (blue), 
a helix (blue) that binds the B subunit (green), a calmodulin-binding target (red), and an autoinhibitory peptide (saffron) that 
binds to the active site on the phosphatase domain. The B subunit (green) resembles calmodulin. The complex also contains 
four disordered regions (pink). The first disordered region (95 amino acids), connects the end of a helix (residue 373) to the 
autoinhibitory peptide (residue 469) and contains a helical calmodulin-binding site; the second disordered region (35 amino 
acids) follows the other end of the autoinhibitory peptide (residue 486); the third disordered region (13 amino acids) is located 
at the amino-terminus of the A subunit, and the fourth disordered region (4 amino acids) is joined to the B subunit (residue 5). 
The calmodulin-binding target and the autoinhibitory peptide likely lose their structures when not bound to their partners, and 
thus probably utilize coupled binding and folding mechanisms as have been shown for disordered regions in other proteins. 
These binding segments are shown to be structured here in the absence of their partners in order to indicate their approxi-
mate locations in the disordered regions.
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function (CDF) analysis [61], both of which evaluate the 
probability that an entire protein is structured or disor-
dered. Links to many of these predictors can be found in 
the Disordered Protein Database (http://www.DisProt.
org) [33]. Links are under construction for many of the 
predictors that are currently missing from DisProt.

From the biologist’s point of view, what is especially 
interesting is that in many cases predictions of protein 
disorder are being used to guide laboratory experiments 

[62-64], which are in turn leading to the discovery of in-
creasing numbers of disordered proteins. We are witness-
ing the development of a positive feedback loop involv-
ing prediction-experiment-prediction, etc., and this loop 
is leading to further increases in the rates of discovery 
for IDPs. To illustrate the growing interaction between 
disorder prediction and laboratory experiments, seven 
interesting examples are presented below. 

In the first example, disorder predictions were instru-

Figure 2 The number of IDPs versus each functional subclass. The DisProt database introduces 32 kinds of IDP-related 
functional subclasses. The x axis gives the number of IDPs involved in each subclass. Currently, there are 123 IDPs in the 
DisProt database whose functions are still unknown. Intrinsic disorder in a given protein can be found by multiple experimen-
tal and computational techniques. The experimental techniques include X-ray diffraction, circular dichroism, nuclear magnetic 
resonance spectroscopy, intrinsic and extrinsic fluorescence, dynamic light scattering, small angle X-ray scattering, gel-
filtration, infrared spectroscopy, Raman optical activity and Raman spectroscopy, limited proteolysis, and many others [121]. 
Many of these techniques are costly and require both a lot of time and an extensive expertise. Furthermore, they are not eas-
ily applicable for large-scale studies, e.g., for a proteome-wide analysis. 
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mental in guiding the structural and functional analyses 
of the measles virus nucleoprotein (N) [62, 65, 66]. In 
this example, the C-terminal domain of N (aa 401-525, 
NTAIL) was predicted and then experimentally shown 
to be intrinsically disordered [65]. Next, a predicted 
α-helical molecular recognition feature, α-MoRF, was 
predicted in the NTAIL region, which was then shown to 
bind to measles virus phosphoprotein (P) [66]. A trun-
cated NTAIL lacking the region containing the predicted 
α-MoRF failed to bind P, thus showing that the predicted 
α-MoRF region is likely required for binding to P [66]. 
The predicted binding site (residues 486-499) was con-
firmed to be an almost perfect match to the actual bind-
ing site (residues 484-504) as determined by X-ray crys-
tallography [67]. 

In the second example, disorder predictions helped to 
guide experiments showing that the organizing domain 
of RNase H is disordered. Furthermore, the predictions 

also helped to identify several binding sites for several of 
the partners that join the complex [64]. Finally, a binding 
site initially identified by disorder prediction was crys-
tallized with its partner and the structure of the complex 
was determined. In this case, the predictor suggested 
residues 834-851 as the binding segment, whereas the 
three-dimensional structure contained a structured seg-
ment that included the 833-847 segment, [68] indicating 
quite a good match between the predicted and observed 
binding segment. Further investigation of the structure of 
the complex suggests the need for the deletion of two to 
three residues from the amino-terminus and the addition 
of approximately three residues on the carboxyl side to 
more closely match the extent of the binding groove, but 
even without this deletion and addition, the agreement 
cited above is already excellent. 

In the third example, disorder predictions helped to 
define studies showing that alternative splicing of a dis-
ordered region of a hox protein plays a key role in the 
development of bilateral symmetry in organisms ranging 
from drosophila to humans [69]. Work in progress shows 
that the DNA-binding affinities to a number of different 
DNA targets become altered as a result of the alternative 
splicing in the disordered region. The authors suggest 
that the variously spliced disordered region may act as 
an antenna that integrates tissue-specific information to 
direct the hox protein to the correct DNA-binding sites 
(Bondos, personal communication). 

In the fourth example, disorder prediction and analy-
sis showed that a flexible linker in replication protein 
A showed an extremely high sequence variability over 
evolutionary time as compared to the structured domains 
of the same protein [70]. This was followed up by NMR 
studies of this linker region from a divergent set of spe-
cies, with the finding that the flexibility remained almost 
constant despite the nearly complete absence of sequence 
conservation [22]. 

In the fifth example, disorder predictions guided in-
vestigations of protein regulation in Saccharomyces cer-
evisiae. The most highly disordered proteins were found 
to be the most tightly regulated, and these highly regu-
lated disordered proteins are generally associated with 
signaling and posttranslational modification [71, 72]. 

In the sixth example, disorder prediction guided the 
successful crystallization of NEIL1, a human homolog 
of Escherichia coli DNA glycosylase endonuclease VIII 
by indicating a disordered region that likely prevented 
crystallization. Crystallization and structure determina-
tion were accomplished by using genetic engineering to 
remove the predicted region of disorder [73]. 

In the seventh and last example discussed here, disor-
der prediction and experience with disordered proteins 

Figure 3 The total number of IDP predictors. The list of predic-
tors includes the following: the first suggested predictor of IDPs 
[34]; the first formal predictor of IDPs [36]; predictor of ID in 
calcineurin family [89]; CH-Plot [35]; CDF [90]; PONDR® VL-XT 
[38]; GlobPlot [43]; DisEMBL [44]; DISOPRED [45]; flavors of 
protein disorder [119]; NORSp [122]; predictor by using reduced 
amino acid alphabet [91]; DISOPRED2 [46]; DRIPPRED [49]; 
FoldUnfold [52, 53]; Softberry (http://www.softberry.com); VaZy-
MolO [97]; PONDR® VL3-E [39]; IUPred [50, 51]; FoldIndex [42]; 
RONN [55]; DISpro [56]; PONDR® VSL1 [40]; CDF [61]; com-
bined CDF/CH-Plot predictor [61]; α-MoRF [88]; Prelink [115]; 
PONDR® VSL2 [41]; Spritz [59]; DisPSSMP [57]; IUP predictor 
[103]; disorder prediction in calmodulin partners [32]; Decision 
trees [68]; Wiggle [123]; iPDA [58]; PrDOS [60]; SGT [105]; 
Ucon [104]; α-MoRF II [87]; composition profiler [124]; POO-
DLE-L [102]; POODLE-S [101]; POODLE-W [105]; NORSnet 
[125]; OnD-CRF [107]; predictor by using bayesian multinomial 
classifier [106]; DISOclust [111]; Top-IDP [126]; DPROT [127]; 
hierarchical classifier [128]; MetaPrDOS [109]; MeDor [112]; 
Draai [129]; CDF-ALL [108];and IUPforest-L [130].
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are guiding the development of novel proteomics meth-
ods that are identifying proteins previously missed by 
standard approaches [74-77]. An interesting aspect of 
this recent work has been the development of additional 
evidence for a connection between alternative splicing 
and intrinsic disorder [78]. 

The seven examples given above illustrate a few of 
the many ways by which experimentalists are making 
use of disorder predictions to help design experimental 
approaches. This list of seven was selected to be illustra-
tive and is not by any means comprehensive. 

In this review, basic concepts and ideas for disorder 
prediction by various algorithms are analyzed, the dif-
ficulties of the IDP prediction are illuminated, and some 
likely future trends in the development of the IDP predic-
tion techniques are discussed. Our goal here is to help in-
crease the intelligent use of these predictors by molecular 
biologists working at the bench. 

The current state of IDP prediction

Recent developments regarding disorder prediction
Recently, the studies on IDPs have gained significant 

attention resulting in a rapid growth of the number of 
research articles and reviews. Since the recent reviews 
mainly discuss IDP predictors that were designed before 
2005 [79-81], here we are focusing on more recent devel-
opments and are categorizing the IDP prediction methods 
in terms of their key concepts and ideas.

An important development has been the inclusion 
of disorder identification in the Critical Assessment of 
Structure Prediction (CASP) meetings [82]. Participants 
in these meetings make predictions on amino acid se-
quences as the structures of these proteins are being de-
termined, but before the structures are known. Once the 
structure of a given protein is completed, structure pre-
dictions on that protein are cut off. An independent group 
of researchers then compares the various predictions 
from many research groups with the observed structures. 
In this way, the predictions are blind, and the third party 
evaluations are unbiased. 

The evaluations of the disorder predictions for CASP5, 
6, and 7 have been published [83-85]. These evaluations 
provide useful insight into the various predictors of disor-
der. With regard to CASP7, nineteen different predictors 
were evaluated and the best five achieved overall accura-
cies of ~ 69 % to ~ 78% in terms of the averaged value 
of specificity and sensitivity for a two state prediction. In 
other words, the accuracy was estimated as percent cor-
rect on disordered regions plus percent correct on struc-
tured regions divided by two, regardless of the degree of 
imbalance between the number of residues in disordered 

and structured regions. These predictors also gave areas 
under their receiver operating characteristics curves (ROC 
curves) ranging from 0.822 ± 0.008 to 0.860 ± 0.007, where 
the ROC curve is a plot of the true-positive rate versus the 
false-positive rate for a given predictor. A random predictor 
would give a value of 0.5 for the area under the ROC curve, 
and a perfect predictor would give 1.0. Thus, the observed 
values, which are > 0.80, indicate fairly good predictors. 
Although the predictors could be ranked by their accura-
cies or by their areas under their ROC curves, the total 
number of predictions at each CASP exercise is rather 
small, so the CASP results should not be used to claim 
that one predictor is more accurate than another.

In our view, the current limitation to further improve-
ment in prediction accuracies comes from noise in the 
structured and disordered protein data. Unstructured 
proteins can form complexes that become structured 
[86], and unless care is taken when selecting structured 
proteins from the Protein Data Bank, structured proteins 
arising from disorder would contribute noise to the train-
ing set for structured protein. Likewise, regions that are 
characterized as disordered experimentally can undergo 
coupled binding and folding. Indeed, PONDR® VL-XT 
has proved to be useful in predicting disordered regions 
that bind to protein partners [64, 87, 88]. Such regions 
often have strong structure-forming tendencies for a lo-
calized region of sequence, and so such regions could 
provide noise for the training set for disordered protein. 

An IDP prediction is built on the basis of the analysis 
of some collection of protein properties. By now, there 
have been many predictors. For many of these predic-
tors, the name, a brief cognate description, and the cor-
responding references are listed in Table 1. Below is 
an historical overview of the development of disorder 
predictors. We first provide an overall representation of 
PONDR®s, which are a series of predictors that have 
various versions, each with its own specificity. Next, we 
discuss the development of some other predictors. We 
also elaborate on the likely characteristics and biological 
significance of IDPs demonstrated by these predictors.

The development of disorder predictors from a historical 
view

The significance of IDPs has led to an increase in the 
number of IDP predictors. Besides PONDR®, there are 
many additional IDP predictors, some of which are un-
dergoing continual modification and improvement. In 
order to provide an historical perspective, we arrange 
these predictors based on the time of publication of the 
original predictor and show the accumulated number of 
published predictors over time in Figure 3. This arrange-
ment suggests that the development of these predictors 
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Table 1 Predictors of IDPs
Predictor	 Publication year	 Brief description
PONDR® [36-41] http://www.pondr.com	 1997-2006	 PONDR®s include several predictors that predict	
		  isordered regions with different length or in any	
		  location of a sequence. All PONDR® predictors	
		  exhibit reasonably good performance.
GlobPlot [43] http://globplot.embl.de	 2003	 The key idea of GlobPlot is the relative 
		  propensity of an amino acid residue to be 	
		  in an ordered or disordered state.
DisEMBL [44] http://dis.embl.de 	 2003	 DisEMBL is able to predict three kinds of 
		  disordered structure, including loops/coils, 	
		  hot loops, and those that are missing from	
		  the PDB X-ray structures.
DISOPRED [45]	 2003	 DISOPRED applies neural networks to inputs of 	
		  whole sequence information.
DISOPRED2 [46] http://bioinf.cs.ucl.ac.uk/disopred 	 2004	 DISOPRED2 directly trains on the whole 	
		  sequence by using SVM.
Weather’s method [91]	 2004	 Weather’s method uses SVM analysis of a linear 	
		  combination of composition vectors.
DRIPPRED [49] http://www.sbc.su.se/~maccallr/disorder/	 2004	 DRIPPRED is based on Kohonen’s self-organizing 	
		  map and received a good evaluation at CASP6.
FoldUnfold [52-54] 	 2004	 FoldUnfold is based on the idea that the structure 	
http://skuld.protres.ru/~mlobanov/ogu/ogu.cgi		  of proteins is governed by the balance between 	
		  the interaction energy of residues and their 	
		  conformational entropy.
IUPred [50, 51] http://iupred.enzim.hu	 2005	 IUPred is based on the idea that inter-residue 	
		  interactions are responsible for determining 	
		  whether a protein forms structure or not.
RONN [55] http://www.strubi.ox.ac.uk/RONN	 2005	 RONN is based on the functional alignments.
DISpro [56] http://scratch.proteomics.ics.uci.edu/	 2005	 DISpro, using a one dimensional recursive neural
	  	 network (1D-RNN) model, combines the flexibility 
		  of Bayesian model with a fast, convenient, 
		  parameterization of an ANN.
FoldIndex [42] http://bip.weizmann.ac.il/fldbin/findex	 2005	 FoldIndex is used to analyze the ratio of net 	
		  charge with hydropathy locally.
Spritz [59] http://distill.ucd.ie/spritz/	 2006	 Spritz consists of two specialized binary 		
		  classifiers, one for short disordered regions and 	
		  the other for long disordered fragments.
DisPSSMP [57]	 2006	 DisPSSMP is based on Radial Basis Function 	
		  Networks with inputs from position-specific 	
		  scoring matrices and other sequence properties.
IUP [103] 	 2006	 A Recursive Maximum Contrast Tree (RMCT) 	
		  was used to recognize intrinsically disordered 	
		  regions.
DisPSSMP2 [58]	 2007	 DisPSSMP2 uses a two-level prediction scheme 	
		  and a condensed position-specific scoring matrix.
PrDOS [60] http://prdos.hgc.jp/cgi-bin/top.cgi	 2007	 PrDOS consists of two predictors, one of which 	
		  uses the alignment of homologs.
NORSnet [104] 	 2007	 NORSnet uses feed-forward neural networks 	
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Table 1 Predictors of IDPs 
Predictor	 Publication year	 Brief description
		  trained in a set of long loop regions.
POODLE-S [101] http://mbs.cbrc.jp/poodle/poodle-s.html	 2007	 POODEL-S is a group of seven SVM predictors 	
		  with each responsible for a specific region of the 	
		  whole sequence.
POODLE-L [102] http://mbs.cbrc.jp/poodle/poodle-l.html	 2007	 POODLE-L is composed of ten two-level SVM 	
		  predictors.
POODLE-W [105] http://mbs.cbrc.jp/poodle/poodle-w.html	 2007	 POODLE-W predicts disordered structures by 	
		  using a Spectral Graph Transducer (SGT) and by 	
		  training with a huge amount of structure-unknown	
		  sequences.
Bayes [106] 	 2008	 Bayesian method computes the conditional 	
		  probability of a sequence from a certain class and 	
		  then infers the posterior probability of the class
OnD-CRFs [107] http://babel.ucmp.umu.se/ond-crf/	 2008	 Conditional Random Fields (CRFs) method 	
		  predicts the intrinsic disorder in proteins. 	
		  CRF is a discriminatively supervised 
		  machine-learning method.
DISOclust [111] 	 2008	 DISOclust applies the principle that ordered 	
http://www.reading.ac.uk/bioinf/DISOclust/DISOclust_form.html		  residues within a protein target should be 	
		  conserved in three-dimensional space within 	
		  multiple models, whereas the residues that vary 	
		  or are consistently missing may be correlated 	
		  with the disordered structure.
metaPrDOS [109]	 2008	 MetaPrDOS is composed of seven individual 	
		  predictors which areas follows: PrDOS, 		
		  DISOPRED2, DisEMBL, DISPROT, DISpro, 	
		  IUPred, and POODLE-S.
MD [110] 	 2009	 MD is a metapredictor composed of NORSnet, 	
http://cubic.bioc.columbia.edu/newwebsite/services/md/index.php		  Ucon, PROFBval, DISOPRED2, IUPred, and 	
		  FoldIndex.
CDF-ALL [108]	 2009	 CDF-ALL is a protein-level disorder predictor 	
		  composed of CDFs from VLXT, VSL2, VL3, 	
		  TopIDP, IUPred, and FoldIndex.

can be divided into three periods. 
The first period (1) First informal IDP predictor The 

first period is the beginning of the prediction for IDPs 
and includes the predictors designed before 2002. In 
1979, much earlier than the publication of the PONDR®s, 
Williams [34] made the first attempt to predict lack of 
structure based on amino acid sequence. He suggested 
that the ratio given by (number of charged amino acids)/
(number of hydrophobic amino acids) would distinguish 
non-folding proteins from structured examples. This 
suggestion was based on very good results for a small 
number of examples. However, Williams did not follow 

up his approach with a larger number of proteins so as to 
make a quantitative estimate of the accuracy of his pre-
dictor. Therefore, we tested the Williams ratio as a disor-
der predictor, using the charged and hydrophobic amino 
acids suggested by Williams and using sets of fully struc-
tured and fully disordered proteins containing hundreds 
of examples in each class. To our disappointment, the 
C/H ratio turns out to be a very poor predictor of disor-
der. A large fraction of structured and disordered proteins 
have overlapping values for the Williams ratio (Bin Xue, 
unpublished observations). 

(2) Development of the PONDR® family The first 
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formal predictor was published by Romero et al. [36] 
in 1997, which could predict disordered structure in 
proteins based on the specific biases of their amino acid 
sequences. These predictors were subsequently called 
Predictors of Natural Disordered Regions (PONDR®) 
followed by letters that describe the proteins in the train-
ing set for that particular predictor.

Basically, the PONDR® algorithms work because the 
amino acid compositions in a window of N amino ac-
ids for structured proteins are distinguishable from the 
compositions for disordered proteins. A typical PONDR® 
uses the following types of inputs: (1) amino acid com-
positions; (2) attributes derived from compositions such 
as sequence complexity; and (3) attributes derived from 
compositions via some function or scale such as hydrop-
athy, net charge, etc. These various types of attributes 
are then weighted and combined in a non-linear manner, 
typically via artificial neural networks (ANNs). Other 
methods of combining the attributes such as support vec-
tor machines (SVMs) and logistic regression give results 
very similar to those obtained with ANNs. 

Obradovic and coworkers used three different algo-
rithms, logistic regression, discriminant analysis, and 
ANN, to predict disordered structures of proteins [37]. 
ANN gives a slightly higher accuracy. But prediction 
accuracy is only a simplistic indicator, and it is inappro-
priate to rank the methods on this basis alone. Logistic 
regression represents the most robust method for predict-
ing two states, order and disorder.

One of the earlier examples is PONDR® VL-XT, 
where VL describes a training set of “Variously charac-
terized Long” (> 30 residues) disordered regions, and 
two additional training sets of X-ray-characterized Ter-
minal regions, one for the amino-terminus and one for 
the carboxy-terminus [38]. This division is based on a 
hypothesis that the disordered structure characteristics of 
sequences might depend on the location of the disordered 
region in the sequence.

VL3-E is a combination of two ANN-based predic-
tors, VL3-H and VL3-P. VL3-H searches for homolo-
gous sequences to increase the number of examples in 
the training sets, while in VL3-P profiles of a sequence 
generated by PSI-BLAST are added as an input attribute 
to improve the accuracy of predicting disordered regions 
[39].

The most recent advance in the PONDR® collection 
is the set of VSL predictors (trained on Variously char-
acterized, Short and Long disordered regions). The very 
first publication from the PONDR® developers pointed 
out that short and long disordered regions might have 
differences in their amino acid characteristics because 
predictors trained on short regions of disorder did poorly 

on long regions of disorder and vice versa [89]. The VSL 
predictors take advantage of this difference. Two ver-
sions of PONDR® VSL have been developed. In the de-
velopment of VSL1, both neural networks and ensembles 
of logistic regression models were tried, with one neural 
network or one ensemble trained on short (≤ 30 residues) 
regions of disorder and a second network or a second 
ensemble trained on long (> 30 residues) regions. Irre-
spective of whether neural networks or logistic regres-
sion ensembles were used for the short- and long-region 
predictors, the two predictors were combined by means 
of a logistic regression model. Since the neural networks 
and logistic regression ensembles gave similar prediction 
accuracies, only the simpler, logistic repression models 
appeared in the subsequent publication [40]. In the VSL2 
predictor, the short- and long-region predictors were 
replaced with SVMs, but likewise a logistic repression 
model was used for the merger [41]. 

VSL1 does reasonably well for predictions of both 
long and short disordered regions. It not only achieves 
the same or higher accuracy as most other predictors for 
long disordered regions, but also improves significantly 
the prediction accuracy of short disordered regions. Like 
VSL1, VSL2 also has the purpose of addressing the 
length-dependency problem in disorder prediction. Its re-
sults further confirm the differences in amino acid com-
positions and sequence properties between short and long 
disordered regions. Short disordered regions are more 
depleted in I, V, and L, while long disordered regions are 
more enriched in K, E, and P but are less enriched in Q. 
In addition, long disordered regions are depleted in G 
and N, while short disordered regions are enriched in G 
and D. Figure 4 shows the difference in amino acid com-
positions between short and long disordered regions [41]. 

The VSL1 predictor was evaluated as the highest 
ranked overall among those predictors at CASP6 [84] 
and VSL2 was evaluated as the highest ranked overall in 
CASP7 [85], both in terms of prediction accuracy and in 
terms of the area under the ROC curve. As stated above, 
given the small number of test examples in the CASP ex-
ercise, no claim is being made that VSL2 is currently the 
best disorder predictor. These predictors are discussed in 
more detail below. 

(3) CH-plot In 2000 Uversky et al. used charge and 
hydropathy to predict disorder, but in an entirely new 
way compared to approach used by Williams much 
earlier as described above. The Uversky et al. [35] ap-
proach is based on the simple reasoning that the folding 
of a protein is governed by a balance between attractive 
forces (e.g., hydrophobic interactions) and repulsive 
forces (Coulomb or electrostatic repulsion). Rather than 
the total charge used in the Williams ratio, net charge 
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is more appropriate for estimating repulsion. High net 
charge leads to strong electrostatic repulsion and low 
hydropathy minimally means less driving force for com-
paction. Thus, whether a query sequence is disordered 
or not can be predicted based on the ratio of its mean net 
charge with mean hydropathy. The mean hydropathy is 
defined as the sum of the hydropathies of all residues di-
vided by the number of residues in the polypeptide. The 
mean net charge is similarly defined as the net charge, at 
pH 7.0, divided by the total number of residues. A plot of 
mean net charge versus mean hydropathy (the CH-plot) 
separates structured and disordered proteins into distinct 
regions and thereby provides a binary predictor [35]. 
Prilusky et al. [42] used this idea to design a per-residue 
disorder predictor, FoldIndex. By computing the CH ra-
tio along the protein, this predictor can predict if a local 
region in given sequence is in a disordered structure.

The second period The second period covers 5 years 
from 2002 to 2006. Many predictors were developed dur-
ing this period, including VL3-E, and VLS1 and VLS2 
of PONDR®. Two other early predictors are GlobPlot and 
DisEMBL.

The kernel idea of GlobPlot is the relative propensity 
of an amino acid residue to be in an ordered or disor-
dered state [43]. GlobPlot uses an amino acid scale based 
on the difference in the probability for a given amino 
acid to be in random coil or to be in regular secondary 
structure. The basic algorithm behind GlobPlot is simple 
and very fast, representing a sum function. In order to 
smooth the curve of this function, a digital low-pass fil-
ter based on the Savitzky-Golay algorithm is run. Then 
the numerical estimation of the first order derivative is 
retrieved. The resulting smoothed function is plotted us-
ing the DISLIN 8.0 package. Putative globular and dis-
ordered segments can be selected by using a simple peak 
finder algorithm. Generally speaking, the change of slope 
corresponds to the boundary between the ordered and 
disordered structures. Therefore, this method can also be 
utilized to identify globular domains.

DisEMBL designed by Linding et al. [43] consists 
of three separate ANN predictors, to predict three kinds 
of disordered structures in proteins, which represent 
residues within “loops/coils (as defined by DSSP38)”, 
“hot loops (loops with high B-factors)”, or those that are 
missing from the PDB X-ray structures (called “Remark 
465”). Linding et al. also investigate the relationships 
between the different disorder definitions. The prediction 
results indicate that the hot loops show less correlation 
with coils and more with the Remark 465 examples. 
Much more work still needs to be done for a deeper 
understanding of relationships among the various disor-
dered structures, which could lead to an improved defini-
tion of IDPs.

An important event was the inclusion of IDP predic-
tion as a category at CASP5. CASP has subsequently 
played a very positive role in promoting the development 
of IDP prediction. During this period, CASP has held a 
total of three exercises involving disorder prediction, and 
each event was accompanied by the emergence of sev-
eral new IDP predictors. First, we introduce DISOPRED 
designed by Jones et al. [45]; this predictor achieved a 
Wilcoxon score of 90.0 at CASP5.

DISOPRED employs a feed-forward neural network 
to predict disordered regions [45]. It needs to use a rela-
tively large number of hidden units to enhance the map-
ping ability, and this may cause over-fitting and slow the 
training down. So, they designed DISOPRED2 based on 
SVMs instead of ANN [47]. SVMs can improve gener-
alization by controlling the classifier’s capacity and the 
associated potential for over-fitting [47]. Compared with 
other methods for disordered structure prediction, the 
main difference of DISOPRED2 is that it directly trains 
on the whole sequence rather than measures of amino 
acid composition, sequence complexity, or biophysical 

Figure 4 Relative amino acid compositions for short and long 
disordered regions. The set of globular proteins, globular-three-
dimensional, the set of short (30 residues or shorter) and the set 
of long intrinsically disordered regions (longer than 30 residues) 
in proteins from the DisProt database (version of 17 October 
2008) are compared. The fractional difference was calculated as 
(C – CCorder)/Corder, where C is the content of a given amino acid 
in a given protein set and Corder is the corresponding content in a 
set of ordered proteins, and plotted for each amino acid. In this 
plot, the amino acids are arranged from the most order-promot-
ing to the most disorder-promoting. Enrichment and depletion 
in each amino acid type appears as a positive and negative 
bar, respectively. Amino acids are indicated by their single-letter 
code. Confidence intervals were estimated using per-protein 
bootstrapping with 1 000 iterations.
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properties such as mean hydrophobicity. The training set 
for DISOPRED2 contained 715 ordered proteins with 
high-resolution X-ray structures (better than 2.0 Å) and 
less than 25% pairwise sequence identity. This set in-
cluded 176 550 ordered and 4 590 disordered residues. 
For each protein in the training set, a sequence profile 
was generated using three iterations of a PSI-BLAST 
search against a non-redundant sequence database. The 
predictor was trained using various combinations of 
binary-encoded amino acid sequence, secondary struc-
ture predictions (SSPs) from PSIPRED, and PSI-BLAST 
profiles for symmetric windows of 15 positions. The N- 
and C-termini were treated separately. 

Subsequently, Jones and coworkers used DISOPRED2 
to estimate the frequency of disordered structures in sev-
eral representative genomes from the three kingdoms of 
life [46]. The prediction result obtained in this study is 
consistent with earlier studies, indicating that IDPs very 
commonly exist in eukaryotes but less so in prokaryotes 
[90]. To explain this result, several explanations have 
been proposed. Prokaryotes are subject to strong selec-
tive pressure on biochemical efficiency and do not have 
highly regulated degradation pathways such as ubiquit-
ination, so the cost of short protein lifetimes is likely to 
be far greater. The absence of cell compartments may 
also reduce the ability of prokaryotic cells to physically 
protect disordered structures from degradation.

Perhaps due to the promotion of CASP, there has been 
recently increased interest in predicting disorder and as-
sociated features from sequence. One example is that of 
Weathers et al. [91] who use reduced sets of amino acids 
to predict IDPs; this approach attained a high accuracy. 
The success in the prediction of IDPs has indicated that 
the composition of amino acid sequences may be a reli-
able feature to indicate the presence of disorder. Weath-
ers et al. [91] demonstrate that not only amino acid com-
position but also reduced sets of amino acids based on 
chemical similarity were able to achieve a high accuracy 
for the IDP prediction. This approach aims to predict 
disorder simply as a linear combination of the composi-
tion vectors using either the full or a reduced amino acid 
alphabet. In more detail, each protein in the dataset of 
1 190 ordered proteins and 718 disordered segments was 
translated into a vector representation. For the full amino 
acid alphabet, the vector set was based on sequence 
composition information for each amino acid. Therefore, 
proteins were represented with one vector for each amino 
acid, thereby leading to a 20-amino acid SVM. For re-
duced amino acid alphabets, proteins were described 
by sets of 15, 10, 8, and 4 vectors. In this analysis, ad-
ditional SVMs were developed to find optimal weights 
by taking linear combinations of composition vectors, 

e.g., a dot kernel function, K(si , x)=si · x, was used in the 
process to map the sample data into a higher-dimensional 
space, where si is a support vector and x is the input 
sequence. The reason for selecting this kernel function 
was that it not only provides a high accuracy but also 
avoids the long training and testing time associated with 
the higher order kernel functions. The prediction results 
demonstrated that the reduced composition of amino 
acids can also gain high prediction accuracy. Even the 
reduced set as small as four maintained a high prediction 
accuracy. Thus, the composition of amino acid sequences 
can be considered as an important factor contributing to 
the disorder prediction of proteins.

During the years from CASP6 to CASP7, the number 
of published predictors grew more than that at any other 
time. Some of them have been mentioned above, includ-
ing VSL1 and VSL2 that have been evaluated as the 
best at CASP6 and CASP7, respectively. Others, such 
as DRIPPRED [49], IUPred [50, 51], FoldUnfold [52-
54], RONN [55], DISpro [56], DisPSSMP [57, 58], and 
Spritz [59], were also proposed in these years.

MacCallum et al. [49] designed DRIPPRED based on 
Kohonen’s self-organizing map (SOM), which was gen-
erated for a non-redundant set of UniProt sequence pro-
files. First of all, selected data were made non-redundant 
using a crude single-pass Perl hashing approach. Every 
sequence of length L residues in the generated protein 
data was run through PSI-BLAST in order to obtain 
the position-specific scoring matrix (PSSM). Then pro-
file windows of sequences were mapped into an SOM. 
Through the training process, every sequence profile 
window can be mapped into a discrete position in the 
SOM grids. Predictions were based on hit frequencies to 
a certain area in this map. Sequences that mapped to part 
of the UniProt space that were relatively unpopulated 
by proteins of known structure were assumed to cor-
respond to disordered regions. After that, the frequency 
of different types of amino acids in the SOM nodes was 
calculated and the classifiers were designed, which can 
determine the prediction result of the query protein.

Dosztanyi et al. suggested that a large number of inter-
residue interactions is responsible for structure stabiliza-
tion of proteins [50, 51]. In contrast, IDPs don’t have 
sufficient numbers of stabilizing inter-residue interac-
tions. Based on this reasoning, an IUPred algorithm esti-
mating the inter-residue interactions was designed. First, 
the interaction energy between each pair of amino acids 
based on their Cβ positions was estimated. This was done 
by calculating the potential mutual contact energies for 
all amino acid pairs in a dataset of globular proteins with 
known structure. This is a fairly standard approach in 
computational biology, and in this work Dosztanyi et al. 
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compared several such mutual contact energies estimated 
previously by other researchers, with the set developed 
by Thomas and Dill, found to be the best in this particu-
lar application [92]. The various pairwise energies were 
assembled into a 20 × 20 energy matrix, which was used 
in the next step, the estimation of the mutual interaction 
energies for any given protein. The prediction utilizes 
this energy prediction matrix and the amino acid compo-
sitions put into a quadratic expression. These statistical 
values represent the ability to form stabilization contacts 
between amino acids in polypeptide chains. The poten-
tial mutual interactions were estimated using amino acid 
compositions, not three-dimensional structures. These 
composition-based energies were compared with three-
dimensional structure-based energies of the proteins for 
which the actual side chain interactions are known. The 
composition-based potential mutual interaction energies 
and the structure-based energies were found to be highly 
correlated, thus the former can be used to estimate the 
latter even when the structures are not known. To use 
this approach to predict structure or disorder, compo-
sition-based calculations for a set of proteins that fold 
into three-dimensional structures were compared with 
composition-based calculations for a set of disordered 
proteins. The estimated potential interaction energies for 
the structured proteins were much greater than the same 
energies for the unstructured proteins, and from these 
results the energy boundary between ordered and disor-
dered proteins as a function of length was determined. 
This boundary allows the recognition of intrinsic disor-
der. In brief, if a sequence contains too few hydrophobic 
residues, then the composition-based potential mutual in-
teraction energy will necessarily be too small and thereby 
indicate the lack of potential for folding. 

Galzitskaya et al. think that the formation of ordered 
structure in proteins is mainly determined by the bal-
ance between the interaction energy of residues and their 
conformational entropy [52-54]. They designed the Fol-
dUnfold predictor based on this idea. In this work, an in-
teresting parameter, namely the mean packing density of 
residues, is used to express the average contact number 
of residues within a given distance in a protein structure. 
It has been demonstrated that regions with low-expected 
packing density correspond to the disordered fragments. 
Interestingly, residue packing density values (called 
residue contact values at that time) were used in early 
disorder predictors developed by the PONDR® group 
[38]. The use of this feature was based on a scale that 
appeared in a technical report [93], not in a published 
paper. In feature selection experiments, this scale was 
found to be very promising, but its use was discontinued 
in later versions of PONDR® due to our failure to find a 

published and readily available version of this scale at 
that time. The recent success of FoldUnfold suggests that 
it would be useful to investigate the reintroduction of this 
feature into future PONDR®s.

Yang et al. [55] designed RONN to predict disordered 
structures based on the sequence alignments. In general, 
it is assumed that similar sequences are likely to have 
similar functions (e.g., being ordered or disordered). 
Therefore, a similarity to prototype disordered sequences 
is evaluated and predictions are made based on a func-
tion of these values. Suppose the sequences of a group 
of ordered and disordered proteins are known, the dis-
ordered status of a query sequence can be inferred by 
comparing it with all the known sequences. In the train-
ing process, the similarity of sequences is evaluated by 
sequence alignment techniques using a mutation matrix 
to score the similarity. These scores of sequence align-
ments are then used for training. After training, every se-
quence can be classified as being ordered or disordered. 
In the testing process, if the testing result can satisfy the 
desired accuracy level, the modeling then progresses to 
the prediction process. Alternatively, the training process 
is repeated until the accuracy reaches the pre-defined 
level. In the prediction process, the sub-sequence of the 
query sequence needs to be aligned with all prototype 
sequences to get the homology scores. Using the above 
model, a probability of disordered structure formation 
for every query sequence can be evaluated. RONN is im-
perfect in that it doesn’t do well in predicting short disor-
dered regions, nor the first and last residues of disordered 
regions. In fact, most predictors for disordered structures 
have this problem. The prediction of disordered struc-
tures in these regions has become one of the important 
issues now.

DISpro, using a 1D-RNN model, combines the flex-
ibility of a Bayes model with the fast, convenient, param-
eterization of ANN without the shortcoming of the stan-
dard ANN feedback with fixed input size [56]. The input 
includes 25 attributes, 20 corresponding to the amino 
acid frequencies, 3 corresponding to the predicted sec-
ondary structure class of the residue, and the last 2 corre-
sponding to the predicted relative solvent accessibility of 
the residue. Because the older version of DISpro needed 
a pre-defined threshold to classify output results, it was 
not able to show the relationship between sensitivity 
and specificity. Lately, this predictor has been improved 
so that the threshold can be changed at will [94]. In this 
way, users can investigate the relationship of specificity 
and sensitivity for disordered and ordered residues.

Su et al. [57] studied the effect on the prediction of 
disorder by using a condensed PSSM obtained from PSI-
BLAST with respect to the physicochemical properties 
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(PSSMP). Based on this study DisPSSMP was designed 
to predict the disordered structures of proteins. A de-
rivative of this predictor, DisPSSMP2, is a two-stage 
classifier that further enhances the prediction power of 
DisPSSMP [58]. Both of these predictors employ Radial 
Basis Function Networks, the output of which denotes a 
probability that a given residue is in a disordered state. In 
DisPSSMP, if the output result of a residue is higher than 
a given threshold, this residue is predicted to be in a dis-
ordered state, whereas in the DisPSSMP2, these output 
results are collected to compose a set for the second layer 
prediction that redefines and adjusts the threshold value 
and size of sliding window, thus smoothing the results of 
the first layer.

Spritz is implemented by using two specialized binary 
classifiers, one for short disordered regions and the other 
for long disordered fragments [59]. The purpose of do-
ing so is to develop different, disjoint expertise by taking 
advantage of the different class distributions in the two 
cases. Spritz uses an SVM with a non-linear kernel func-
tion. The frequencies of twenty amino acids are used as 
the inputs into the SVM. The Spritz server has two inter-
faces, one for single and one for multiple queries.

As many viral proteins have a modular organization, 
containing regions (hydrophobic or disordered) that are 
often not compatible with the crystallization process [95, 
96], the ‘viral enzyme module localization’ (VaZyMolO) 
tool to define and classify viral protein modularity was 
elaborated [97]. VaZyMolO analyzes viral proteins by 
implementing BLAST [98], multalin [99], hydrophobic 
cluster analysis (HCA) [100], and CH-plot analysis [35]. 
VaZyMolO is organized to have three layers reflecting 
surface (layer S), matrix (layer M) and non-structural 
proteins (layer F), and aims at defining viral protein 
modules that might be expressed in a soluble and func-
tionally active form, thereby identifying candidates for 
crystallization studies [97]. 

POODEL-S [101] is another complex of predictors. 
This predictor is composed of seven SVM predictors, 
with each responsible for a pre-determined region away 
from both termini. Each SVM is trained by various com-
binations of 10 physicochemical features and sequence 
profiles from PSI-BLAST. For amino acids overlapped 
by different regions, the average of the predictions from 
each region is taken as the final prediction value. POO-
DLE-L [102] is a similar two-level SVM predictor that 
divides the whole sequence into 10 subregions. The in-
puts of this predictor are only 10 physicochemical prop-
erties. The first level predicts the disordered probability 
for a segment, and based on the output of the first level 
and the physicochemical properties of each amino acid, 
the second level presents a residue-based prediction.

A method based on the Recursive Maximum Contrast 
Tree (RMCT) was also used to recognize IDPs [103]. 
This classifier utilizes K-Nearest Neighbor Decision 
Rules, where the nearest neighbors are defined by the 
tree structure. Classifications with RMCT on tree nodes 
are guided by K majority voting principles. First, using 
a particular feature to be tested, this algorithm calcu-
lates the distances between a test instance and two sets 
of training instances, and then it calculates the average 
distances for the two sets of test instances. The two sets 
of training instances are comprised of ordered and dis-
ordered regions. The overall distance is then calculated 
as the difference between the average distances obtained 
for the ordered and disordered sets divided by the square 
root of the sum of the standard deviations calculated for 
the distributions of the distances from the test instance 
to the training instances. A predictor is then formed by 
a majority vote over a set of features selected to form a 
given predictor. By combining the decisions from many 
different predictors, the overall performance was further 
improved [103].

NORSnet [104] is another feed-forward neural net-
work-based predictor for long disordered loop regions. 
The inputs of this method include the sequence profile 
from PSI-BLAST and a group of predictions of second-
ary structure, solvent accessibility, and flexibility, as well 
as various attributes related to the sequence composition. 
The largest difference of this method from other disorder 
predictors is that it is trained on a specially selected set 
of long loop regions. 

The third period In the previous two periods, the pre-
diction techniques mainly included ANNs and SVMs. 
IDP prediction after CASP7 exploited more methods, 
such as Spectral Graph Transducers (SGTs) [105], 
Bayesian methods [106], Conditional Random Fields 
(CRFs) [107], and metapredictors [61, 108-110].

Shimizu et al. [105] proposed the use of information 
from structure-unknown proteins in order to avoid train-
ing data sparseness. They predicted disordered struc-
tures by using a SGT, with training on a huge amount of 
structure-unknown sequences as well as structure-known 
sequences. The SGT was used to construct a k-nearest-
neighbor graph, which takes into account the informa-
tion on the unlabeled data. SGT assigns a label to U by 
dividing G into two subgraphs, G+ and G– . The predic-
tion results show that the data with structure-unknown 
information can not only expand the training set but also 
improve the accuracy of the disorder prediction.

The prediction system of PrDOS consists of two 
predictors, one based on the local amino acid sequence 
information and the other based on the template proteins 
[60]. First of all, the target amino acid sequence is con-
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verted into a PSSM. Then, two predictions are performed 
using the PSSM. The first SVM-based predictor is built 
based on the local amino acid sequence information. The 
second predictor is based on template proteins and uses 
the alignments of a query sequence with structures that 
are known. To combine the results of two independent 
predictors, the weighted average between the results of 
two predictors is calculated. PrDOS uses the alignment 
of homologs with templates that have been determined. 
The alignment of homologs is very popularly applied to 
predict the secondary structures of proteins. The success 
of PrDOS indicates that it may provide a useful reference 
for the disorder prediction.

In view of the above concepts provided by Dosztanyi 
et al. and Galzitskaya et al. that average contact pro-
pensities can be used to predict disordered structures, 
Schlessinger et al. [104] make use of protein-specific in-
ternal contacts to predict disordered regions relevant for 
protein interactions and thereby designed Ucon. Ucon is 
a specific predictor that only has the ability to identify 
long disordered regions (> 30 residues in length).

Bayesian classifier methods have wide applications 
in the structure prediction of proteins. Bulashevska and 
Eils [106] were the first to apply this approach to predict 
IDPs. Each protein sequence belonging to a certain class 
can be considered as a realization of an independent 
random process that emits symbols from an alphabet 
of 20 amino acids. In this classifier, the appearance of 
every amino acid is considered as an independent event. 
This method computes the conditional probability of a 
sequence from a certain class, and then infers the pos-
terior probability of the class for an unlabeled sequence 
based on Bayes’ rule. In this analysis, the attributes used 
include the compositions of the amino acid sequences. 
Since the amino acid composition depends on the length 
of disordered regions, they make three separate repre-
sentations to predict long, medium, and short disordered 
regions. This predictor achieves good performance.

Wang et al. [107] used a new method, CRFs, to predict 
the intrinsic disorder in proteins. A CRF is a discrimina-
tively supervised machine-learning method. Compared 
to ANNs and SVMs, CRFs are able to take into account 
interrelation information between two labels of neighbor-
ing residues. The features of amino acid sequences and 
information on predicted secondary structure are used as 
the inputs of this model. A limitation of this approach is 
that the training speed of CRFs is slow.

The DISOclust method is based on the simple premise 
that the ordered residues within a protein target should 
be conserved in three-dimensional space within multiple 
models, whereas the residues that vary or are consistently 
missing may be correlated with the disordered structure 

[111]. This method can be divided into two steps, the 
prediction of the per-residue error in multiple fold recog-
nition models and a simple analysis of the conservation 
of per-residue error across all models. At the first step, 
the per-residue quality of each model is calculated by 
carrying out structural alignments with every other mod-
el using the TM-score program. The average S-score of 
each kind of residue in each model is calculated. These 
scores of each model are added together and divided by 
the number of models. Then a mean S-score for each 
residue in all models can be evaluated. The approximate 
posterior probability of a residue being in a disordered 
state can be expressed as 1 minus this score. McGuffin 
demonstrates that a simple consensus of methods that in-
cludes DISOclust can significantly outperform all of the 
previous individual methods tested.

Recently, a new direction in the development of dis-
order predictors based on the creation of metapredictors 
has attracted attention. These metapredictors combine the 
outputs of several individual predictors. They can be ap-
plied either at the residue level or at the whole sequence 
level. Often, the individual predictors constituting 
metapredictors use different philosophies for prediction. 
In the following, we discuss one older metapredictor fol-
lowed by discussion of three very new metapredictors 
developed during the most recent period of predictor de-
velopment. 

For the first time, two philosophically different pre-
dictors were combined in a metapredictor in 2005 [61], 
when a consensus method was developed that was 
based on two distinct binary classifiers, the CH-plot [35] 
and the CDF analysis [90]. Carefully selected sets of 
52 wholly disordered and 105 unique, wholly ordered 
monomers without ligands or disulfide bonds were used 
in this study. Furthermore, a set of 64 partially ordered 
proteins was derived from PDB structures that contained 
a single chain and a unit cell with a primitive space 
group. As mentioned above, the CH-plot discriminates 
ordered and mostly disordered proteins based on the 
combination of net charge and hydrophobicity [35]. A 
simultaneous observation of low mean hydropathy and 
relatively high net charge is typical for the “natively 
unfolded” proteins, which are characterized by the lack 
of compact, collapsed structure. Therefore, ordered and 
disordered proteins plotted in CH-space can be separated 
to a significant degree by a linear boundary, with proteins 
located above this boundary line being natively unfolded 
and with proteins below the boundary line being ordered 
[35]. The CDF analysis was proposed as a method for 
classifying proteins as being mostly ordered or mostly 
disordered based on the per-residue PONDR® VL-XT 
outputs [90]. The CDF summarizes the per-residue disor-
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der predictions by plotting PONDR® scores against their 
cumulative frequency, which allows ordered and disor-
dered proteins to be distinguished based on the distribu-
tion of prediction scores. In more detail, the CDF curve 
gives the fraction of the outputs that are less than or equal 
to a given value. According to the CDF analysis, fully 
disordered proteins have low percentages of residues 
with low-predicted disorder scores, since the majority of 
their residues possess high-predicted disorder scores. On 
the contrary, the majority of residues in ordered proteins 
are predicted to have low disorder scores. Hence, theo-
retically, the curves for all the fully disordered proteins 
should stay at the lower right quadrant of the CDF-plot, 
whereas all the fully ordered proteins should be located 
at the upper left quadrant [88, 90]. Therefore, overall, the 
CH-plot is a linear classifier that takes into account only 
two parameters of the particular sequence – charge and 
hydropathy, whereas CDF analysis is dependent upon 
the output of the PONDR® VLXT predictor, a non-linear 
neural network classifier, which was trained to distin-
guish order and disorder based on a significantly larger 
feature space that explicitly includes net charge and hy-
dropathy. According to these methodological differences, 
CH-plot analysis is predisposed to discriminate proteins 
with substantial amounts of extended disorder (random 
coils and pre-molten globules) from proteins with globu-
lar conformations (molten globule-like and rigid well-
structured proteins). On the other hand, PONDR®-based 
CDF analysis may discriminate all disordered conforma-
tions including molten globules from rigid well-folded 
proteins. Therefore, this discrepancy in the disorder 
prediction by CDF and CH-plot might provide a compu-
tational tool to discriminate “natively unfolded” proteins 
from native molten globules, which might be predicted 
to be disordered by CDF, but compact by CH-plot [23, 
61]. This model is consistent with the behavior of sev-
eral IDPs. Next, the CH- and CDF-plots were combined 
into a single classification method using the consensus 
scoring method that focuses on correct classification of 
proteins for which prediction methods disagree by using 
a weighted combination of the reliability measures [61].

The work described above was very recently followed 
up, and this led to an improved binary metapredictor 
to estimate whole protein structure or disorder [108]. 
This new metapredictor was based on a combination of 
several CDF predictors developed from several disorder 
predictors, including PONDR®s VLXT, VSL2, and VL3, 
TopIDP, IUPred, and FoldIndex. A neural network was 
then used to combine these individual CDF-based pre-
dictions. The neural network was trained on a fully dis-
ordered subset obtained from DisProt and a fully ordered 
dataset extracted from PDB. In comparison with the 

individual whole protein predictors, this metapredictor 
improved the prediction accuracy by 5%-10% on various 
datasets [108].

Ishita and Kinoshita developed the metaPdDOS 
metapredictor for per-residue estimates of order and dis-
order [106]. The MetaPdDOS uses a SVM to integrate 
residue-level predictions from PrDOS, DISOPRED2, 
DisEMBL, DISPROT, DISpro, IUPred, and POODLE-S. 
This SVM was trained on a group of PDB-extracted 
proteins that all have regions of missing electron density 
in their crystal structures, and the sequence identities 
among these proteins are less than 20%. By using only 
two components, PrDOS and DISpro, this metapredictor 
achieves an accuracy in terms of the AUC (area under 
the ROC curve) of about 0.897 estimated by 10-fold 
cross-validation. By utilizing all seven individual predic-
tors, the 10-fold cross-validation AUC goes up to 0.904 
± 0.004. The AUC of this method on the CASP7 dataset 
is also high, giving 0.877 ± 0.007. These researchers did 
not identify a specific threshold for their metapredic-
tor, and so did not report an overall accuracy for order-
disorder prediction. 

Based on the important observation that the reliability 
of disorder prediction benefits from the use of several 
methods relying on different concepts or different physi-
cochemical parameters [79, 81, 97], a web metaserver 
MeDor for fast, simultaneous analysis of a query se-
quence by multiple predictors was developed [112]. Me-
Dor provides a graphical interface with a unified view of 
the outputs of the following programs: a SSP, based on 
the StrBioLib library of the Pred2ary program [113, 114], 
HCA [100], IUPred [51], Prelink [115], RONN [55], Fol-
dUnfold [53], DisEMBL [44], FoldIndex [42], GlobPlot2 
[43], PONDR®s VL3 and VL3H [116], PONDR® VSL2B 
[40], and Phobius [117]. The authors emphasize that Me-
Dor does not provide a consensus of disorder prediction. 
The major goal of this web metaserver is to provide a 
global overview of various predictions utilizing different 
philosophies, and to accelerate the process of disorder 
prediction by multiple tools [112]. 

Schlessinger et al. [110] designed another metapredic-
tor named MD (MetaDisorder) predictor. This method 
employs neural networks to combine the predictions 
from NORSnet, DISOPRED2, PROFbval, and Ucon. 
A second method described in this work also combines 
the prediction from FoldIndex, IUPred, and several ad-
ditional sequence features, such as predicted secondary 
structure, local sequence profile, predicted solvent acces-
sibility, sequence complexity, amino acid composition, 
sequence length, etc. The training datasets were proteins 
from PDB and DisProt. This method achieved an AUC 
of 0.80, which is several percentage points higher than 
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the values estimated for the individual predictors. Before 
comparing the performance of this metapredictor with 
those discussed above, one should remember that com-
paring predictors is typically equivocal due to differences 
in the training and testing datasets, and due to variations 
in the methods used for accuracy evaluation.

Difficulties of IDP Prediction

The enthusiasm for predicting disordered structures 
of proteins continues to grow. As mentioned above, the 
number of representative predictors has increased to 
more than 40 since the first one was published in 1997. 
In the process of designing and using these predictors, 
much significant biological and biomedical information 
has been obtained. The related findings have been ana-
lyzed in detail within the descriptions of the correspond-
ing predictors. Although the IDP-related research is con-
tinuing to be of significant interest, and, although gratify-
ing achievements occurred, this field is still experiencing 
many difficulties.

First, the number of proteins with experimentally de-
termined disordered structure is still small. A databank 
of IDPs has been built [33]. The DisProt Release 2.0 (14 
February 2005) included 179 IDPs and 290 disordered 
regions, whereas the DisProt Release 4.5 (7 July 2008) 
included 520 IDPs and 1 191 disordered regions. This 
indicates that the number of annotated IDPs is increasing 
rapidly, but there still is an enormous gap compared with 
the actual number of IDPs in nature and compared to the 
number of experimentally validated IDPs. The predic-
tion results of PONDR® and DISOPRED2 have revealed 
that IDPs are very common in eukaryotes. The number 
of IDPs experimentally characterized so far is only a tiny 
fraction of this total, and of the experimentally character-
ized examples, only a small fraction of these have been 
annotated within the current database. The lack of suffi-
cient numbers of structurally characterized IDPs signifi-
cantly limits the development of new predictors and also 
limits the ability to improve already existing predictor 
algorithms. Clearly, an increased level of resources de-
voted to the annotation of IDPs is important. 

Second, because the molecular mechanisms of dis-
ordered structure formation are not very clear yet, the 
selected characteristics and attributes in the prediction 
process are mainly focused on the biochemical proper-
ties of amino acids and on the compositional content of 
sequences. These current approaches might be putting 
limits on the descriptions of structural peculiarities of 
IDPs, and this in turn might cause us to underestimate 
the frequency of IDPs. These observations suggest that 
a large increase in the amount of experimental work on 

these proteins should be done to provide more biomedi-
cal and biophysical information regarding IDPs.

Third, IDPs can be characterized by more than 20 
biophysical methods, each of which gives slightly differ-
ent information. Thus, if time and money were no issue, 
there would be a significant advantage to characterize 
a significant number of disordered regions by multiple 
methods [110, 118]. A collection of IDPs characterized 
by multiple methods would provide an important basis 
set for developing a deeper understanding of different 
types of disorder. 

Fourth, a consensus has not yet been reached among 
different researchers regarding even the definition of 
IDPs. Typically researchers involved in the IDP studies 
have put forward different IDP definitions based on dif-
ferent aspects of the protein structural ensembles, and 
several researchers have pointed out the importance of 
characterizing individual IDPs by a variety of compu-
tational methods [5, 61, 79, 81, 97, 110, 112, 118]. But 
even if this were done, the situation would still resemble 
the Indian parable of collection of blind men examining 
an elephant, with each method providing a different im-
pression of the shape and structure of the beast. A very 
important development will be to learn how to merge 
the various types of information regarding disordered 
proteins into a common model or into a common set of 
models. In this regard, the methods to identify or classify 
different types of disorder, especially different types that 
are associated with different functions [119], need to be 
improved. 

Future of IDP Prediction

Accurate IDP prediction is a necessary prerequisite for 
the complete understanding of the principles of protein 
folding. IDP prediction is also needed for comprehension 
of the molecular mechanisms of protein function and 
for building a new structural and functional hierarchy 
of proteins. Recently, researchers have found that IDPs 
often have a close relation with some diseases including 
cancer, cardiovascular disease, diabetes, neurodegenera-
tive disease, and amyloidoses [120]. Thus, accurate IDP 
prediction is drawing more and more attention. At pres-
ent, the developing directions of IDP prediction include 
three aspects as follows:

(1) Improve the accuracy of the prediction for IDPs, 
especially short disordered regions and disorder in N- 
and C-terminal regions of protein sequences. In the 
prediction process, these regions are often ignored by 
researchers. As a result, a large number of rather ac-
curate algorithms are currently designed to predict long 
disordered regions, whereas the prediction accuracy for 
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the short and terminal disordered regions remains lower. 
Overall, the prediction of short and terminal regions is 
challenging and clearly represents one of the crucial di-
rections for future development. 

(2) Another difficult problem that prevents improved 
prediction for IDPs is the high noise level regarding 
both the structured and disordered regions that are used 
as training sets. Structured proteins often have localized 
regions that undergo disorder-to-order transition upon 
complex formation or even upon crystallization. Like-
wise, disordered proteins have local subregions that are 
primed to form structure when interacting with a partner, 
and so, from the sequence point of view, these regions 
often have the characteristics of structured proteins. 
Thus, experimentally characterized regions of structure 
and disorder both have significant levels of noise with 
regard to the correct assignment of order or disorder. 

(3) Currently, in the IDP prediction field, the most 
commonly used computational techniques are ANN and 
SVM, which could be considered as “black-boxes.” The 
prediction results of these “black-box” models are not 
easily understood in terms of their underlying sequence 
features. On the other hand, methods based on physico-
chemical properties, such as CH-plot, IUPred, and Fold-
Index, are still not so accurate. One approach that has 
been used to better understand the ability of a particular 
sequence to fold into a particular structure has been the 
application of protein-design approaches. To our knowl-
edge, no one has carried out protein-design approaches to 
try to better understand the distinctions between disorder-
forming sequences from those that form structure. Such 
approaches could potentially provide a new window into 
the reasons why sequences fold into three-dimensional 
structure or remain as poorly structured ensembles. 

(4) Two general interrelated difficulties are likely to 
be important for future improvement of IDP prediction. 
These difficulties are as follows: (i) determining the most 
effective techniques for data classification and (ii) given 
a particular data classification, selecting the most appro-
priate approach for prediction. Yang et al. [55] suggested 
that incorporating some well-performing methods and 
looking for common disordered features may be the best 
way to gain the reliable identification of disordered re-
gions of proteins. In essence, this approach is to classify 
IDPs into subsets based on coherent prediction by a well-
performing method, and then to study the coherently pre-
dicted IDP subsets to discover their common features. 

Summary Comments

Both equipment and labor costs are very high for 
laboratory-based experiments, and the results obtained 

from the use of a single type of experiment often give 
ambiguous analysis of IDPs. Given these limitations and 
difficulties in the experimental characterization of IDPs, 
prediction techniques are expected to continue to be very 
important for helping to develop an understanding of 
these proteins. With the continued development of pre-
diction techniques, more accurate or at least better-under-
stood IDP prediction is expected to occur. Given current 
or hopefully more accurate IDP predictors, an important 
future goal will be to improve sequence-function identifi-
cation for IDPs and to include such IDP-based functional 
annotation in the amino acid sequences of the various 
model organism databases.
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