
www.cell-research.com | Cell Research

Zhifeng Xiao et al.
73

npg

ORIGINAL ARTICLE

Upregulation of Flk-1 by bFGF via the ERK pathway is essential for 
VEGF-mediated promotion of neural stem cell proliferation
Zhifeng Xiao1, Yaxian Kong1, Shufa Yang1, Meiyu Li1, Jinhua Wen1, Lingsong Li1

1Peking University Stem Cell Research Center and Cell Biology Department, Peking University Health Science Center, Beijing, 
China

Neural stem cells (NSCs) constitute the cellular basis for embryonic brain development and neurogenesis. The process 
is regulated by NSC niche including neighbor cells such as vascular and glial cells. Since both vascular and glial cells 
secrete vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), we assessed the effect of 
VEGF and bFGF on NSC proliferation using nearly homogeneous NSCs that were differentiated from mouse embryonic 
stem cells. VEGF alone did not have any significant effect. When bFGF was added, however, VEGF stimulated NSC 
proliferation in a dose-dependent manner, and this stimulation was inhibited by ZM323881, a VEGF receptor (Flk-1)-
specific inhibitor. Interestingly, ZM323881 also inhibited cell proliferation in the absence of exogenous VEGF, suggesting 
that VEGF autocrine plays a role in the proliferation of NSCs. The stimulatory effect of VEGF on NSC proliferation 
depends on bFGF, which is likely due to the fact that expression of Flk-1 was upregulated by bFGF via phosphoryla-
tion of ERK1/2. Collectively, this study may provide insight into the mechanisms by which microenvironmental niche 
signals regulate NSCs. 
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Introduction

Neural stem cells (NSCs) hold the capacity of self-re-
newal and can differentiate into neurons, astrocytes and 
oligodendrocytes. They play a major role in the develop-
ment of the embryonic central nervous system and continue 
to function throughout adulthood [1-3]. The proliferation 
and differentiation of NSCs depend on microenvironmental 
niche signals [4, 5], including a number of growth factors 
such as vascular endothelial growth factor (VEGF) and 
basic fibroblast growth factor (bFGF) [6]. 

VEGF was originally identified as a major mediator of 
angiogenesis [7, 8]. It plays an important role in mediating 
vascular permeability and tissue regeneration [9, 10]. In 
most occasions, VEGF exerts its action via its receptor, 

Flk-1, in endothelial cells, hematopoietic stem/progenitor 
cells and some tumor cells [11-14]. In the central nervous 
system (CNS), for instance the hippocampus, VEGF 
stimulates the expansion of NSCs and neurogenesis in 
various animal models, resulting in improved learn-
ing ability [15-18]. In adults, NSCs are found in close 
proximity to blood vessels and surrounded by glial cells 
in the hippocampus and the subventricular zone. Previ-
ous studies by others suggested that both vascular cells 
and glial cells may serve as a niche for NSCs [19, 20]. 
Since both cell types express VEGF and bFGF [21], we 
hypothesize that these two growth factors may serve as 
niche signals for NSCs.

There are a number of observations suggesting that 
bFGF may also modulate neurogenesis, both in vivo and 
in vitro. First, bFGF and its main receptor, FGFR-1, are 
both present in the mouse CNS during corticogenesis 
[22]. Second, bFGF is secreted from cells within the brain 
through an energy-dependent exocytosis process [23]. 
Third, during the early phase of development, neural pro-
genitor cells proliferate in response to bFGF during the 
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neurogenic phase [24, 25]. It has been reported that knock-
ing out bFGF during critical periods of brain development 
led to an overall reduction in progenitor proliferation and 
subsequent neuronal differentiation [26, 27].

To assess the roles of VEGF and bFGF in regulation of 
NSCs, we used a nearly homogeneous population of NSCs 
derived from mouse embryonic stem (ES) cells to test the 
hypothesis that bFGF and VEGF coordinately regulate 
NSC proliferation. 

Materials and Methods

Neural induction of mouse ES cells
ES CGR8 cells were maintained in BHK21 medium containing 

10% fetal bovine serum (GIBCO, NY, USA), 1 mM sodium pyruvate 
(GIBCO), 0.1 mM β-mercaptoethanol (GIBCO), 1× non-essential 
amino acids (GIBCO), 1 000 U/ml leukemia inhibitory factor (LIF, 
Chemicon, CA, USA) and 0.292 mg/ml glutamine (GIBCO), and 
passaged onto gelatin-coated dishes every other day [28]. ES cells 
were induced to differentiate into NSCs as reported by Okabe et al. 
[29]. Briefly, embryoid bodies were formed and kept in suspension 
by withdrawing LIF for 4 days, and then plated onto a tissue culture 
dish in Dulbecco’s minimal essential medium (DMEM; GIBCO) with 
10% fetal bovine serum for 24 h. On the next day, the medium was 
changed to DMEM/F12 supplemented with 5 µg/ml insulin, 50 µg/ml 
transferring buffer, 30 nM selenium chloride and 5 µg/ml fribronectin 
(ITSFn medium) (Sigma, MO, USA) for 7 days. NSCs selected from 
ITSFn were cultured on disk pre-coated with fibronectin (50 µg/ml; 
GIBCO) in DMEM/F12, supplemented with 1× N2 (GIBCO) and 10 
ng/ml bFGF (Pepro Tech EC, London, UK).

Immunofluorescence and confocal microscopy
NSCs were passaged on slides coated with fibronectin the day 

before detection. Cells were fixed in 4% paraformaldehyde at room 
temperature for 20 min followed by permeabilization with PBS con-
taining 0.5% Triton X-100 for 30 min. After washing with PBS, the 
cells were blocked for 1 h at room temperature with PBS containing 
5% secondary antibody serum, and then incubated with primary anti-
bodies. To detect NSCs, the following primary antibodies were used: 
mouse anti-nestin (1:100, Chemicon, CA, USA), mouse anti-Bmi-1 
(1:100, Upstate Biotechnology, NY, USA), rabbit anti-Sox-2 (1:150, 
Chemicon). After washing, slides were incubated with secondary 
antibodies (Jackson ImmunoResearch, PA, USA) conjugated with 
fluorescein isothiocyanate or tetramethylrhodamine isothiocyanate 
at room temperature for 30 min. After washing, the slides were 
mounted with fluorescence mounting medium (VECTORS, CA, 
USA) containing 4V,6-diamidino-2-phenylindole (DAPI) and ana-
lyzed by immunofluorescent microscope (Leica, Wetzlar, Germany) 
or confocal laser scanning microscope (Leica).

Reverse transcription polymerase chain reaction (RT-PCR)
Total RNA was extracted with TRIZOL reagents (Invitrogen, MD, 

USA), following the manufacturer’s instructions. Complementary 
DNA of extracted cells was subsequently synthesized from total RNA 
using a Ready-to-Go Kit (Amersham Pharmacia Biotech, NJ, USA). 
PCR was performed using Taq polymerase (Invitrogen). Forward and 
reverse primers were (5'-3'): β-actin-for: ATG GAT GAC GAT ATC 
GCT G ; β-actin-rev: TGA GGT AGT CTG TCA GGT ; nestin-for: 

GGA GTG TCG CTT AGA GGT GC; nestin-rev: TCC AGA AAG 
CCA AGA GAA GC ; Bmi-1-for: AGC AGA AAT GCA TCG AAC 
AA; Bmi-1-rev: CCT AAC CAG ATG AAG TTG CTG A; VEGF-
for: ATG AAC TTT CTG CTC TCT TGG; VEGF-rev: TCA CCG 
CCT TGG CTT GTC ACA .

VEGF enzyme-linked immunosorbent assay
VEGF in culture supernatants were measured by using mouse 

VEGF ELISA Kit (R&D System, MN, USA) following the manu-
facturer’s instructions.

RNA interference
The small interference RNA (siRNA) (sense and antisense strands) 

was purchased from Genechem Company (Shanghai, China). The 
siRNA sequences used in this study were: for VEGF, sense: 5'-CAC 
ACA UUC CUU UGA AAU Adtdt-3', antisense: 5'-UAU UUC AAA 
GGA AUG UGU Gdtdt-3'; for nonsilencing control siRNA, sense: 
5'-UUC UCC GAA CGU GUC ACG Udtdt-3'; antisense: 5'-ACG 
UGA CAC GUU CGG AGA A-3'. Transfection of cells was performed 
with the Lipofectamine 2000 reagent (Invitrogen) in 96-well plates 
(Nunc, Denmark) according to the manufacturer’s instructions. Four 
hours after transfection, the cells were washed, and the media were 
changed to the normal growth medium. VEGF concentrations in the 
supernatant and cell proliferation were measured at 24, 48 and 72 h 
after transfection.

Proliferation assay
Cell proliferation was evaluated by measuring tritiated thymidine 

incorporation. NSCs (2–4×104/well) were trypsinized and passaged 
onto flat-bottomed 96-well plates that were pre-coated with fibronec-
tin at a volume of 200 µl per well in the presence of 10 ng/ml bFGF. 
In the following days, the media is changed and cells are treated 
with various concentrations of recombinant VEGF164 (Pepro Tech), 
ZM323881 (Calbiochem, Darmstadt, Germany). After 24 hours incu-
bation, each well was added with 0.2 µCi of [3H]thymidine (specific 
activity: 1 Ci/mmol, Amersham) for 12 h. Cells were lysed by two 
freeze-and-thaw cycles, and harvested onto glassfibre filters (Perkin 
Elmer, MA, USA) with a 96-well plate harvester (Tomtec, USA). The 
cellular thymidine uptake was determined in liquid scintillation fluid 
(Perkin Elmer, Finland) with Liquid scintillation & Luminescence 
counters (Perkin Elmer).

Western blot analysis
NSCs were starved in serum-free DMEM/F12 medium with-

out bFGF for at least 12 h. The cells were then incubated with or 
without 10 mM of U0126, an inhibitor of MEK. Two hours later, 
VEGF (100 ng/ml), bFGF (10 ng/ml) or both were added. After 
incubation for 30 min, the cells were collected and lysed in lysis 
buffer (50 mM Tris-Cl pH 8.0, 150 mM NaCl, 1% Nonidet P-40, 
0.1% sodium dodecyl sulfate (SDS), 1% Triton X-100) containing 
protease inhibitors. Total protein concentration was determined 
by Bradford assay. Equal amounts (30 mg) of total protein were 
separated by 10% SDS-polyacrylamide gels (SDS-PAGE). The 
protein was electrophorectically transferred to a PVDF membrane. 
After blocking in 5% nonfat milk for 1 h at room temperature, the 
membranes were incubated overnight at 4ºC with various primary 
antibodies raised against total and phosphorylated ERK1/2 (1:1000, 
Santa Cruze). After extensive wash with PBS containing 0.1% 
Tween-20, the membranes were then incubated with horseradish 
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peroxidase-conjugated secondary antibody (1:1 000, Santa Cruz) 
for 1 h at room temperature. The membranes were then washed with 
PBS containing 0.1% Tween-20 and the signals were visualized 
using the enhance chemiluminescence system (ECL) (PerkinEl-
mer). After being “stripped”, the membranes were re-probed with 
antibody against Flk-1 (1:1 000, Santa Cruze) or with antibody 
against a-tubulin as a loading control.

Statistics
All experiments were repeated at least three times. The statistical 

significance of differences was evaluated by Student’s t-test for single 
comparison, and by ANOVA followed by post hoc t-tests for multiple 
comparisons. All statistical tests were two-sided. Significance was 
taken as P<0.05.

Results

A nearly homogeneous population of NSCs was derived 
from ES cells

When ES cells were induced to differentiate into NSCs, 
the cells became small and elongated. After three pas-
sages in the presence of 10 ng/ml of bFGF, a virtually 
uniform cell population was established. We confirmed 
the successful differentiation of ES cells into NSCs by 
immunofluoresence and confocal microscopy. More than 
95% of the NSCs expressed nestin and Bmi-1 (Figure 1A). 
None of these markers were expressed in ES cells. Bmi-1 

Figure 1 Characterization of NSCs derived from ES cells. (A) Immunofluorescence analysis of ES cells and NSCs derived from ES 
cells. (a) Absence of nestin expression in ES cells; (b–d) more than 95% of the neural stem cells expressed nestin; (e–h) both ES 
cells (e) and NSCs (f–h) expressed Sox-2; (i) absence of Bmi-1 expression in ES cells; (j–l) more than 95% of the NSCs expressed 
Bmi-1. (B) The expression of nestin and Bmi-1 in NSCs was confirmed by RT-PCR. Sox-2 was not tested because the gene consists 
only of a single exon. Scale bar =40 µm.
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is required for the post-natal maintenance of stem cells in 
multiple tissues including the CNS and peripheral nervous 
system. On the other hand, the stem cell marker Sox-2 
was expressed in both ES cells and NSCs. More than 95% 
of the cells expressed NSC makers such as nestin, Bmi-1 
and Sox-2, suggesting that this NSC population is nearly 
homogeneous. The expression of nestin and Bmi-1 was 
further confirmed by RT-PCR (Figure 1B). 

VEGF promoted the proliferation of NSCs via Flk-1
NSCs were cultured in DMEM/F12 supplemented with 

1× N2 and 10 ng/ml of bFGF. To analyze the dose-de-
pendent effect of VEGF, NSCs were treated with various 
amounts of exogenous VEGF. As demonstrated by tritiated 
thymidine incorporation, exogenous VEGF promoted the 
proliferation of NSCs in a dose-dependent manner. The 
maximal effect occurred at a VEGF concentration of 100 
ng/ml (Figure 2A). 

To test whether VEGF mediates its action via Flk-1, 
we tested tritiated thymidine incorporation in the presence 

of exogenous VEGF and ZM323881, a specific inhibitor 
for Flk-1. Indeed, ZM323881 inhibited NSC proliferation 
(Figure 2B). Interestingly, the Flk-1-specific inhibitor 
ZM323881 also inhibited NSC proliferation in a dose-de-
pendent manner even when no exogenous VEGF was added 
(Figure 3A). This result suggests that endogenous VEGF 
contributes to NSC proliferation through an autocrine 
mechanism. To support this speculation, RT-PCR was per-
formed and the results showed that NSCs indeed expressed 
three VEGF isoforms: VEGF120, VEGF164 and VEGF188 
(Figure 3B). An increasing amount of VEGF protein was 
also detected in a time-dependent manner in the supernatant 
of NSC cultures using ELISA (Figure 3B).

We further tested the effect of endogenous VEGF on 
NSC proliferation by siRNA-mediated knockdown. As 
shown in Figure 3, VEGF concentrations in the culture 
supernatant (Figure 3C) and in the cell lysate (Figure 
3D) were both reduced to 50% of the control level 72 h 
after the siRNA transfection. Accordingly, inhibition of 
NSC proliferation was observed at 48 h and became more 
prominent 72 h after the siRNA transfection (Figure 3E). 
Inhibition of NSC proliferation by siRNA transfection 
could be partially reversed by addition of 100 ng/ml of 
exogenous VEGF (Figure 3F).

To determine whether blocking VEGF signaling could 
induce NSC apoptosis, which would affect the total number 
of viable NSCs in culture, the Annexin V-positive NSCs 
were detected by flow cytometry. The result revealed that 
cell apoptosis was not increased after the application of 
the VEGF receptor inhibitor ZM323881 (not shown), sug-
gesting that inhibition of VEGF signaling does not lead to 
NSC apoptosis. 

Phosphorylation of ERK is essential for bFGF-induced 
Flk-1 expression and the subsequent effect of VEGF on 
NSC proliferation

bFGF promoted the proliferation of NSCs in a dose-
dependent manner and became more prominent in the 
presence of 100 ng/ml of VEGF (Figure 4A). In contrast 
to bFGF, VEGF alone did not have any effect on the pro-
liferation of NSCs without bFGF. In the presence of bFGF, 
however, VEGF promoted the proliferation of NSCs in a 
dose-dependent manner (Figure 4B). 

To investigate the reason why the effect of VEGF de-
pends on bFGF, we measured Flk-1 expression levels in 
NSCs cultured in media with or without bFGF. As shown 
in Figure 4D, Flk-1 expression was upregulated in NSCs by 
bFGF treatment, and this elevation was blocked by U0126, 
a specific inhibitor for ERK1/2 phosphorylation (4D). In 
agreement with this observation, active phosphorylated 
ERK1/2 in these cells was increased in the presence of 
bFGF. VEGF alone did not have any effect on ERK1/2 

Figure 2 VEGF stimulated neural stem cell proliferation via Flk-1. 
(A) Exogenous VEGF stimulated NSC proliferation in a dose-de-
pendent manner as measured by tritiated thymidine incorporation. 
(B) ZM323881, an Flk-1 inhibitor, suppressed VEGF-induced NSC 
proliferation in a dose-dependent manner.
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phosphorylation (Figure 4C). Therefore, bFGF-mediated 
upregulation of Flk-1 via phosphorylation of ERK1/2 
was essential for the stimulatory effect of VEGF on NSC 
proliferation. 

Discussion

Many growth factors may be involved in the regulation 
of NSC proliferation; however, it is not clear how these 
growth factors coordinate with each other to carry out 

this task. In various animal models, VEGF stimulates the 
proliferation of NSCs and neurogenesis in the CNS, such 
as the hippocampus [15, 16]. In adult hippocampus and the 
subventricular zone, NSCs are found in close proximity to 
blood vessels and surrounded by glial cells. Other studies 
suggested that endothelial cells and astroglia cells, which 
express VEGF and bFGF, stimulate self-renewal and ex-
pand neurogenesis of NSCs and may serve as a niche for 
NSCs [19, 20]. In the present study, we found that VEGF 
autocrine plays a role in the regulation of NSC proliferation 

Figure 3 Downregulation of endogenous VEGF expression inhibited the proliferation of NSCs. (A) ZM323881 suppressed NSC 
proliferation in the absence of exogenous VEGF. (B) RT-PCR showed that VEGF164 was the main isoform expressed in NSCs. 
VEGF protein production in the NSC culture supernatant also increased progressively with time. (C) VEGF protein production in the 
culture supernatant by NSCs was reduced after RNA interference of VEGF. (D) VEGF protein production in the lysate of NSCs was 
reduced after RNA interference of VEGF. (E) Inhibition of endogenous VEGF production by VEGF RNA interference resulted in 
suppressed proliferation of neural stem cells. (F) Inhibition of NSC proliferation by VEGF RNA interference was partially reversed 
by addition of exogenous VEGF.
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via Flk-1 (Figure 3). To our surprise, though, unlike the ef-
fect of bFGF on NSCs, the effect of VEGF in promotion of 
NSC proliferation depends on the addition of bFGF. This 
may be due to the fact that upregulation of Flk-1 by bFGF 
via phosphorylation of ERK1/2 is essential for the effect 
of VEGF on NSC proliferation (Figure 4). 

It has been reported that VEGF has a biphasic effect 
on the neural progenitor cells [30]. At low dosages, for 
instance, 50 ng/ml, VEGF promotes proliferation of neural 
progenitor cells; at the dosage of 500 ng/ml, however, it 
enhances neuronal differentiation of adult neural progenitor 
cells. In our studies, we observed that the massive prolifera-
tive effect of VEGF on NSCs peaked at a dosage of 100 
ng/ml. We did not see any effect of VEGF on neuronal 
differentiation of NSCs at higher dosages. This difference 
may be due to the fact that the NSCs we used were derived 
from ES cells and, therefore, were probably less differenti-
ated than progenitor cells used in other studies. 

Expansion of NSCs from embryonic day 5.5 (E5.5) to 
E7.5 epiblast depends on leukemia inhibitory factor (LIF) 

but not on bFGF. On the other hand, expansion of NSCs 
from E8.5 neural plate depends on bFGF [31]. Since the 
NSCs we used are also bFGF-dependent, they may be simi-
lar to NSCs from E8.5 neural plate [31] in terms of differ-
ential stages. VEGF could also promote NSC proliferation; 
however, its effect requires the presence of bFGF (Figure 
4B). This is because expression of Flk-1 was regulated by 
the bFGF signal (Figure 4D). This finding confirms the 
observations by Zhang et al. [32], and we further provide 
evidence that phosphorylation of ERK upon bFGF stimula-
tion is essential for upregulation of Flk-1 (Figure 4D). 

Overall, this study demonstrated that exogenous and/or 
endogenous VEGF regulates the proliferation of NSCs, 
and the effect of exogenous VEGF is bFGF dependent. 
bFGF upregulates the expression of Flk-1 via stimulating 
phosphorylation of ERK. This novel finding enhances our 
understanding on how these two growth factors coordinate 
with each other in regulation of NSC proliferation, and may 
provide insight into the mechanisms by which microenvi-
ronmental niche signals regulate NSCs.

Figure 4 VEGF-induced NSC proliferation was dependent on increased Flk-1 expression level by bFGF via promoting ERK1/2 
activation. (A) VEGF and bFGF had additive effects on NSC proliferation. (B) VEGF-induced NSC proliferation was suppressed in 
the absence of bFGF. (C) Western blotting showed increased amounts of phosphorylated ERK1/2 after addition of bFGF regardless of 
the presence of VEGF. VEGF alone had no effect on ERK1/2 activation. (D) Increased expression of Flk-1 induced by bFGF was de-
tected by Western blotting, and was abolished when cells were also treated with a specific inhibitor for ERK1/2 phosphorylation.
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