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The enigmatic role of angiopoietin-1 in tumor angiogenesis
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ABSTRACT

A tumor vasculature is highly unstable and immature, characterized by a high proliferation rate of endothelial cells,
hyper-permeability, and chaotic blood flow. The dysfunctional vasculature gives rise to continual plasma leakage and
hypoxia in the tumor, resulting in constant on-sets of inflammation and angiogenesis. Tumors are thus likened to
wounds that will not heal. The lack of functional mural cells, including pericytes and vascular smooth muscle cells, in
tumor vascular structure contributes significantly to the abnormality of tumor vessels. Angiopoietin-1 (Ang1) is a
physiological angiogenesis promoter during embryonic development. The function of Ang1 is essential to endothelial
cell survival, vascular branching, and pericyte recruitment. However, an increasing amount of experimental data
suggest that Ang1-stimulated association of mural cells with endothelial cells lead to stabilization of newly formed
blood vessels. This in turn may limit the otherwise continuous angiogenesis in the tumor, and consequently give rise
to inhibition of tumor growth. We discuss the enigmatic role of Ang1 in tumor angiogenesis in this review.
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INTRODUCTION

Normal blood vessels are composed of two distinct
cell types: endothelial cells, the most well studied com-
ponent of blood vessels with regard to cancer
angiogenesis, and mural cells. The mature quiescent vas-
culature of most organs is characterized by extensive
coverage by mural cells; in capillaries and smaller vessels,
the mural cell component is comprised of pericytes,
whereas in larger vessels this role is fulfilled by smooth
muscle cells. This investiture of the endothelial tubule by
mural cells is thought to play a major role in maintenance
of the quiescent state. For new blood vessel formation
to occur, the mural cell coating of the preexisting vessel
must first be dissociated, followed by matrix degradation
and extravascular fibrin deposition, and freeing of en-
dothelial cells to respond to angiogenic signals with
proliferation, migration and tubule formation (reviewed
in[1]). Remodeling occurs to prune vessels to fit the needs

of the tissue. This is then followed by a maturation phase
characterized by investiture of the endothelial tubule with
mural cells leading to quiescence of both cell types, with
subsequent basement membrane reconstitution, estab-
lishment of cell-cell junctional complexes, and stabiliza-
tion of the vessel. Coordinated regulation of pro- and
anti-angiogenic factors is necessary for each stage to
ensure the development of a normal, functional vessel.

It is well established that tumors must acquire the
ability to stimulate capillary formation to progress from a
small localized growth with a limited oxygen and nutrient
supply to a well-vascularized enlarged tumor[2]. The
primary driving force for tumor angiogenesis is the com-
bination of the demand for oxygen and nutrients by the
growing cancer cells, and the physical limit of the dis-
tances for small molecules to diffuse across the stroma
between a nearby capillary and the cell making the
demand, a physical limit of about 100 mm[3]. Folkman
and colleagues suggested that once the radius of the tu-
mor reaches this limit, hypoxic conditions occur in the
center of the cell mass. An ̀ angiogenic switch' then takes
place in favor of new blood vessel growth[4].

Several different mechanisms have been proposed to
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lead to vascularization of tumors. Folkman and colleagues
suggested that the tumor induces capillary sprouts from
surrounding vasculature by altering the local balance of
angiogenic promoters and inhibitors[2], in a process
known as angiogenesis. Alternatively, Yancopolous and
colleagues proposed that cancer cells initially encroach
upon existing microvessels (co-opting), this being followed
by destabilization and regression of the vessels in the
center of the tumor mass, and initiation of new capillary
growth at the periphery of the tumor[5]. Moreover,
Dvorak and colleagues suggested that a tumor prior to
its own expansion would prepare a microvascular net-
work by stimulating angiogenesis in its immediate
surrounds, then utilize these vessels in the expansion
phase[6]. A considerable collection of growth factors and
cytokines are shown to take part in the modulation of
tumor angiogenesis. However, among the most impor-
tant components of the potential to initiate angiogenesis
in a tumor are plasma leakage and hypoxia.

Abnormality of tumor blood vessels

Due to the aberrant expression of angiogenic factors,
tumor vessels develop very abnormally, giving rise to a
highly dysfunctional vasculature[7]. Tumor blood vessels
are dilated, with uneven diameters and excessive branch-
ing and shunts. The tortuous blood flow is inadequate
and leads to hypoxia and acidic regions. The vessel walls
are also abnormal, characterized by the presence of a
large number of endothelial fenestrae and trans-cellular
openings, widened intercellular junctions, and a discon-
tinuous basement membrane. Finally, tumor blood ves-
sels are characterized by decreased mural cell investi-
ture[8-10]; ultrastructural studies demonstrate that even
when mural cells are present, they exhibit abnormal as-
sociation with the underlying endothelial tubule[11, 12].
Consequent to this lack of maturation, tumor vessels are
highly permeable with significant plasma extravasation
[13, 14].

As a result of this permeability, Dvorak likened
tumors to wounds that do not heal [15]. In a wound,
plasma leakage is the result of tissue injury, whereas tu-
mor cells secrete vascular permeability factor (VPF),
perhaps better now known as Vascular Endothelial
Growth Factor (VEGF), which renders vessels
hyperpermeable. During wound healing, platelets facili-
tate generation of the provisional matrix and initiate the
wound healing process; platelets are also important in
the later stage of wound healing because they produce

platelet-derived growth factor (PDGF), a potent mito-
gen and chemoattractant for precursors of smooth muscle
cells and pericytes [16]. In contrast, platelets have not
been found outside of blood vessels of solid tumors.
Moreover, fibrin and fibronectin appear only transiently
in wounds that heal normally, being replaced by type I
and III collagen in which the density of blood vessels
diminishes[17]. Fibrin and fibronectin persist in tumor
stroma, however, probably due to constitutive tumor pro-
duction of VPF/VEGF, which results in protracted ves-
sel leakage and continuing clotting of extravasated fi-
brinogen and fibronectin; in wounds, by contrast, vascu-
lar permeability is repaired within a few days after injury.
Tumors are thus likened to an unending series of wounds
that continually initiate healing and angiogenesis but are
unable to heal completely.

Angiopoietins and Tie2

Many growth factors are proposed to play a role in
both physiological and pathological angiogenesis. One
family of vascular regulatory molecules which has been
the subject of intense investigation in both physiological
and pathological blood vessel generation are the
angiopoietins. The Angiopoietin family of growth factors
is comprised of four family members that bind to the
Tie2 tyrosine kinase receptor with different outcomes.
Angiopoietin-1 (Ang1), the main ligand for Tie2[18,19],
and -4[20] are agonistic ligands, whereas Angiopoietin-2
(Ang2) and -3 can serve as antagonistic ligands[20, 21].
Although Ang1 does not stimulate proliferation of endot-
helial cells [18], in vitro Ang1 can induce endothelial mi-
gration[22], tubule formation[23] and sprouting[24,25],
and survival from a variety of apoptotic insults[26-29],
suggesting that Ang1 can be a potent pro-angiogenic
factor. Transgenic null mutation of the Ang1 gene con-
firms an angiogenic role for Ang1, as Ang1 null embryos
are unable to form a complex vascular network and ex-
hibit decreased vessel support by mural cells[19]. These
results gave the first indication that Ang1 may play a
role in recruitment of mural cells to support the primitive
endothelial tubule and enhance vessel maturation.
Transgenic Ang1 overexpression or systemic adenoviral
delivery resulted in increased vascular branching[30-32].
Since Ang1 is not a mitogen, the increased vascular
branching may arise from reinforcement of VEGF-in-
duced angiogenesis. Indeed, Ang1 has been shown to
synergise with VEGF to enhance angiogenesis in the rat
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aorta model[33] and increase vessel density in the cor-
neal implant assay[34] and several other in vivo assays
[35-38]. While overexpression of VEGF alone gives rise
to increased vascular branching, the vessels induced by
VEGF are leaky[32]. By contrast, the vessels induced in
the presence of Ang1 are not leaky and resist leakage
induced by inflammatory agents[32,39,40]. Part of the
means by which this resistance to leakiness occurs may
be attributed to markedly enhanced pericyte coverage
of the nascent vessels.

The role of Ang2 in blood vessel regulation is quite
complex. Transgenic overexpression of Ang2 leads to a
phenotype essentially the same as that seen in the Ang1
knockout, suggesting that Ang2 serves as an antagonist
for Ang1[21]. This prediction has held true in vitro, as
Ang2 can prevent Ang1-stimulated effects on endothe-
lial cells including phosphorylation of Tie2[21] and mi-
gration[22]. Interestingly, however, it has been shown
that Ang2 can activate ectopically-expressed Tie2 on fi-
broblasts[22] and can activate endothelial Tie2 at high
concentrations[41] or when cells are plated on fibrin[42]
or collagen matrix[43]. Indeed, the Ang2 knockout dem-
onstrates that while Ang2 is dispensable for embryonic
vascular development, Ang2 is required for both the vas-
cular regression and sprouting events involved in post-
natal ocular angiogenesis[44].

An intimate relationship between angiopoietins and
VEGF in angiogenesis was predicted by analysis of Ang1,
Ang2, and VEGF expression in cyclical rat ovary
angiogenesis. In this study, Ang2 and VEGF mRNA were
co-expressed at the front of invading sprouts during ac-
tive angiogenesis, whereas Ang2 is upregulated and
VEGF is downregulated during vessel regression[21].
While Ang1 mRNA expression is relatively stable
throughout the process, the Ang2 to Ang1 ratio is drasti-
cally elevated during corpus luteum vessel regression
compared to angiogenesis during corpus luteum forma-
tion[45]. These studies lead to the current dogma that
Ang1 and VEGF promote angiogenesis and vessel
maturation, whereas Ang2 serves to antagonize the mu-
ral cell contact induced by Ang1; in the presence of
VEGF, angiogenesis ensues while in the absence, ves-
sels regress[21]. This notion is further supported by analy-
sis of angiogenesis in the pupillary membrane. Ang2 in-
duces proliferation and migration of endothelial cells and
stimulates sprouting of new blood vessels when VEGF
is present, whereas it promotes endothelial cell death and
vessel regression when the activity of endogenous VEGF

is inhibited[46].
Null mutation of the gene for the Tie2 angiopoietin

rereceptor gave rise to a phenotype similar to both Ang1
null and Ang2 transgenic mice[47,48]. Since Tie2 is
thought to be largely specific to endothelial cells, it has
been suggested that Ang1 activates the Tie2 receptor on
endothelial cells, resulting in a yet uncharacterized
paracrine loop between EC and SMC. As transgenic
knockout approaches targeting PDGF-B/bR give rise to
vessels that similarly lack sufficient mural cell investi-
ture[16,49], PDGF has been suggested as a candidate
for such a paracrine loop but this has yet to be docu-
mented experimentally. We and others have recently
reported that mesenchymal mural cell precursor cells,
smooth muscle cells, and pericytes express Tie2[50-53],
and that Tie2 levels can be further upregulated on smooth
muscle cells[53] and pericytes[52] by VEGF. Further,
Ang1 can induce migration of mural cell precursors[51]
and VEGF-preconditioned smooth muscle cells[53].
These data suggest that part of the mechanism of Ang1-
induced vessel maturation may be direct stimulatory ac-
tion on mural cells.

Angiopoietin expression in tumors

Given the importance of angiopoietins in vascular
development, it was of interest to determine what role
these factors may play in tumor angiogenesis. In general,
high levels of Ang2 by tumor or vascular tissues have
been documented in a wide variety of highly vascular-
ized tumors such as malignant glioblastoma[54-56], non-
small cell lung cancer[57, 58], hepatocellular carcinoma
[59-62], gastric carcinoma[63], Kaposi's sarcoma and
angiosarcoma[64], neuroblastoma[65] and thyroid tumor
[66] (see Tab 1). Further, Ang2 expression has been cor-
related with poor prognosis in NSCLC [67], HCC[62],
gastric[63] and breast[68] cancers. In addition, HT29
colon cancer, hepatocellular carcinoma, and MKN-7
gastric cancer cells engineered to overexpress Ang2
demonstrated augmented tumor growth and vessel count
compared to vector controls[59,63,69]. In many cases,
VEGF overexpression is observed as well, suggesting
that destabilization by Ang2 permits VEGF-induced an-
giogenesis to proceed (see Tab 1). Indeed, VEGF has
been reported to upregulate endothelial Ang2 in vitro[70]
and in vivo[71], although in a C6 brain tumor model, Ang2
expression precedes the appearance of VEGF during the
initiation of tumor angiogenesis[72, 73]. Increased ex-
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pression of Ang2 is thought to play an integral role in
both the proposed mechanism of vessel co-option[5,74]
as well as sprouting angiogenesis[73].   Interestingly,
Lewis Lung carcinoma or TA3 mammary carcinoma cells
transfected with Ang2 result in decreased tumorigenesis,
which the authors attributed to an imbalance with VEGF
expression that allowed for vessel regression[75]. It
should be noted that Ang2-overexpressing xenograft ves-
sels lacked coverage by mural cells[54,63,71,75] and an
inverse correlation between Ang2 upregulation and peri-
cyte coverage has been observed in human gliomas[54,
74,76]. Finally, in a chemically induced skin carcinogen-
esis model, Ang2 is not expressed in normal skin, but is
upregulated at an early stage during papillomagenesis[77].
Not surprisingly, Ang2 expression has been reported to
be upregulated by hypoxia in microvascular endothelial
[70,78] and glioma cells in vitro[74] and in capillary en-
dothelium in vivo[78,79]. Taken together, these results
suggest that Ang2 plays an important role in the initiation
of tumor angiogenesis, presumably by its ability to an-
tagonize Ang1-induced, mural cell-mediated vessel
stabilization.

By contrast, the role of Ang1 in tumor angiogenesis
is less clear. Overexpression of Ang1 has been docu-
mented in malignant glioblastoma[54,55], neuroblastoma
[65], non-small cell lung cancer[57], and variably in other
tumors as well (see Table I). In addition, in a Hela xe-
nograft model, Ang1 antisense RNA lead to decreased
tumor growth and angiogenesis[80] and overexpression
of Ang1 promoted HeLa tumor angiogenesis[81], sug-
gesting that Ang1 may stimulate angiogenesis in that
model. Increasing evidence, however, is suggesting a
lack of a role for Ang1 in several cancers in a clinical
setting. Recently, we reported that breast cancer epi-
thelial cells do not express Ang1[82]; others have con-
firmed decreased Ang1 expression in breast tumors com-
pared to normal breast tissue[83]. Similarly, immunohis-
tochemistry studies demonstrated that Ang1 is expressed
in normal colonic epithelium, whereas colon tumors lack
appreciable Ang1 staining[84]. Further, in a mouse skin
carcinogenesis model, it was shown that Ang1 expres-
sion was completely abolished in papillomas compared
to normal skin, and that Ang1 was downregulated in mu-
tant ras-bearing keratinocyte cell lines[85]. In addition,
hypoxia, a principal driver of tumor angiogenesis, has been
shown to downregulate Ang1 production by glioblastoma
cell lines[55] and fibroblasts[86]. These studies suggest
a selective loss of Ang1 expression during the progres-

sion toward malignancy.

Inhib i t ion     o f    tumor   growth   b   Ang1
overexpression

In sharp contrast to the findings from the transgenic
studies showing that  Ang1 is  a promoter of
vasculogenesis and angiogenesis during embryonic
development, studies using xenograft models demonstrate
that ectopic expression of Ang1 in breast[82] and colon
[69] cancer cells results in decreased tumor prolifera-
tion and angiogenesis. In addition, Ang1 inhibits colon
cancer peritoneal[87] and hepatic metastases[88]. A simi-
lar tumor inhibitory role for Ang1 has been observed for
squamous cell carcinoma (SCC), as stable overex-pression
of Ang1 in A431 xenograft model showed inhibition of
tumor growth[77], and the K14-HPV16/K14-Ang1
double transgenic developed fewer pre-malignant and
tumorigenic lesions than K14-HPV16 parentals [89].
These data suggest that, despite its important stimula-
tory role in embyronic blood vessel formation, Ang1 may
exert an inhibitory role for tumor angiogenesis.

What is the mechanism by which the angiogenic
factor Ang1 can paradoxically inhibit tumor angiogenesis?
Analysis of blood vessels from the Ang1-inhibited tumor
models above suggest that the answer may lie in the abil-
ity of Ang1 to recruit mural cells to stabilize the blood
vessel. Tumor vessels in the Ang1-transfected breast[50],
colon[69], hepatic colon tumor[88], and squamous cell
[77] xenografts mentioned above all demonstrate signifi-
cantly increased association of pericytes with vessels,
suggesting that enforced maturation of blood vessels may
functionally inhibit tumor angiogenesis. First of all, the
ability of Ang1 to inhibit vascular permeability is thought
to be due partly to the enhancement of cell-cell junctions
[40], as well stabilization of blood vessels by the promo-
tion of mural cell recruitment[19,34,35,38]; it is interest-
ing to note that the absence of pericytes leads to defects
in endothelial junction formation[16]. In addition, periph-
eral blood vessels in the Ang1-transfected MCF7 tumors
were not dilated, in contrast to those in the vector con-
trol counterparts[50]. This Ang1-mediated decline in ves-
sel permeability may decrease the plasma extravasation
that creates the permissive, or even stimulatory, envi-
ronment for further angiogenesis.

Secondly, the presence of mural cells is postulated to
be inhibitory for endothelial angiogenic responses. Indeed,
several studies[90,91] have demonstrated that actively
proliferating endothelium lacks coverage by mural cells,
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and ultrastructural analysis of breast tumors showed that
vessels in areas of low vascular density had greater peri-
cyte coverage than areas of high vascular density[92].
Further, the loss of pericytes observed in PDGF-B/bR
knockouts is concomitant with endothelial hyperplasia
[16]. In addition, mural cell-endothelial cell interactions
are reduced following stimulation of angiogenesis[93,94],
and the arrival of pericytes coincides with the cessation
of vessel growth during wound healing[95], suggesting
that contact with pericytes leads to quiescence of endot-
helial cells. In vitro studies by culturing endothelial cells
with smooth muscle cells or pericytes using a variety of
models corroborate the decreased growth of endothelial
cells under these conditions in a fashion that requires
cell-cell contact[96,97]. Mural cells have been further
implicated in the prevention endothelial cell migration[98]
and sprouting[99], and activation of endothelial MT1-
MMP[100].

Numerous studies have indicated the important role
of VEGF in both physiological and pathological angio-
genesis. The intimate interaction of VEGF with the
angiopoietins leads to the ability to tightly control the an-
giogenic process. It is thought that the antagonism of
Ang1-induced vascular stability by Ang2 leads to disso-
ciation of the mural cell coating to initiate angiogenesis;
the ratio of Ang1 to Ang2 is likely to be a critical deter-
minant in this process. In the presence of VEGF, endot-
helial cells can proliferate, migrate, and form tubules, and
in some cases this may act in synergy with Ang1 that is
present[32,36,37]. It is tantalizing to suggest that the ex-
pression of Tie2 by mural cells and their precursors, and
the ability of VEGF to upregulate Tie2 on these cells,
renders them responsive to Ang1-mediated migration,
leading to investiture of the endothelial tubule with mural
cells. This stabilization makes endothelial cells unrespon-
sive to further angiogenic cues and thereby terminates
angiogenesis. Ang1-mediated stabilization of tumor blood
vessels may therefore be desirable therapeutically to in-
hibit new vessel formation and thereby arrest tumor
growth.

CONCLUSIONS
Researche on anti-angiogenesis as an anti-cancer

approach has for some time focused on endothelial cells.
It is not until recently that the role of mural cells has
drawn more and more attention from cancer researchers,
despite the fact that mural cells are an important compo-
nent of the vascular wall, and their functions have been

studied extensively in the cardiovascular field. It is plau-
sible that the anti-angiogenesis effect of vascular stabili-
zation in tumors may lead to new approaches to the de-
velopment of cancer therapies.
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