Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

CD28 ligation increases macrophage suppression of T-cell proliferation

Abstract

When compared to spleen or lymph node cells, resident peritoneal cavity cells respond poorly to T-cell activation in vitro. The greater proportional representation of macrophages in this cell source has been shown to actively suppress the T-cell response. Peritoneal macrophages exhibit an immature phenotype (MHC class IIlo, B7lo) that reduces their efficacy as antigen-presenting cells. Furthermore, these cells readily express inducible nitric oxide synthase (iNOS), an enzyme that promotes T-cell tolerance by catabolism of the limiting amino acid arginine. Here, we investigate the ability of exogenous T-cell costimulation to recover the peritoneal T-cell response. We show that CD28 ligation failed to recover the peritoneal T-cell response and actually suppressed responses that had been recovered by inhibiting iNOS. As indicated by cytokine ELISpot and neutralizing monoclonal antibody (mAb) treatment, this ‘cosuppression’ response was due to CD28 ligation increasing the number of interferon (IFN)-γ-secreting cells. Our results illustrate that cellular composition and cytokine milieu influence T-cell costimulation biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Schwartz R, Mueller D, Jenkins M, Quill H . T cell clonal anergy. Cold Spring Harbor Symp Quant Biol 1989; 54: 605–610.

    Article  CAS  PubMed  Google Scholar 

  2. Greenwald R, Freeman G, Sharpe A . The B7 family revisited. Ann Rev Immunol 2005; 23: 515–548.

    Article  Google Scholar 

  3. Manicassamy S, Pulendran B . Dendritic cell control of tolerogenic responses. Immunol Rev 2011; 241: 206–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Composto G, Gonzalez D, Bucknum A, Silberman D, Taylor J, Kozlowski M et al. Peritoneal T lymphocyte regulation by macrophages. Immunobiology 2011; 216: 256–264.

    Article  CAS  PubMed  Google Scholar 

  5. Nagaraj S, Gabrilovich D . Myeloid-derived suppressor cells in human cancers. Cancer J 2010; 16: 348–353.

    Article  CAS  PubMed  Google Scholar 

  6. Hopken U, Lehmann I, Droese J, Lipp M, Schuler T, Rehm A . The ratio between dendritic cells and T cells determines the outcome of their encounter: proliferation versus deletion. Eur J Immunol 2005; 35: 2851–2863.

    Article  PubMed  Google Scholar 

  7. Pollard J . Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004; 4: 71–78.

    Article  CAS  PubMed  Google Scholar 

  8. Drake C, Jaffee E, Pardoll D . Mechanisms of immune evasion by tumors. Adv Immunol 2006; 90: 51–81.

    Article  CAS  PubMed  Google Scholar 

  9. Rabinovich G, Gabrilovich D, Sotomayor E . Immunosuppressive strategies that are mediated by tumor cells. Ann Rev Immunol 2007; 25: 267–296.

    Article  CAS  Google Scholar 

  10. Denning T, Norris B, Medina-Contreras O, Manicassamy S, Geem D, Madan R et al. Functional specialization of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization. J Immunol 2011; 187: 733–747.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu B, Kennedy J, Wang Y, Sandoval-Garcia C, Cao L, Xiao S et al. Plasticity of Ly-6Chi myeloid cells in T cell regulation. J Immunol 2011; 187: 2418–2432.

    Article  CAS  PubMed  Google Scholar 

  12. Bronte V, Zanovello P . Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 2005; 5: 641–654.

    Article  CAS  PubMed  Google Scholar 

  13. Matlack R, Yeh K, Rosini L, Gonzalez D, Taylor J, Silberman D et al. Peritoneal macrophages suppress T-cell activation by amino acid catabolism. Immunology 2006; 117: 386–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hamilton M, Antiganano F, Rossum A, Boucher J, Bennewith K, Krystal G . TLR agonists that induce IFN-β abrogate resident macrophage suppression of T cells. J Immunol 2010; 185: 4545–4553.

    Article  CAS  PubMed  Google Scholar 

  15. Lagasse E, Weissman I . Flow cytometric identification of murine neutrophils and monocytes. J Immunol Meth 1996; 197: 139–150.

    Article  CAS  Google Scholar 

  16. Leo O, Foo M, Sachs D, Samelson L, Bluestone J . Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci 1987; 84: 1374–1378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gross J, Callas E, Allison J . Identification and distribution of the costimulatory receptor CD28 in the mouse. J Immunol 1992; 149: 380–388.

    CAS  PubMed  Google Scholar 

  18. Potter M . History of the BALB/c family. Curr Top Microbiol Immunol 1985; 122: 1–5.

    CAS  PubMed  Google Scholar 

  19. Paigen K . One hundred years of mouse genetics: an intellectual history. I. The classical period (1902–1980). Genetics 2003; 163: 1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rochford R, Riggs J, Clavo A, Ernst D, Hobbs M . Differential effect of CD28 costimulation upon cytokine production by CD4+ and CD8+ T cells. Immunobiology 2004; 209: 513–522.

    Article  CAS  PubMed  Google Scholar 

  21. Zou W, Chen L . Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 2008; 8: 467–477.

    Article  CAS  PubMed  Google Scholar 

  22. Quezada S, Peggs K, Simpson T, Allison J . Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol Rev 2011; 241: 104–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bouaziz JD, Yanaba K, Tedder T . Regulatory B cells as inhibitors of immune responses and inflammation. Immunol Rev 2008; 224: 201–214.

    Article  CAS  PubMed  Google Scholar 

  24. Nishikawa H, Sakaguchi S . Regulatory T cells in tumor immunity. Int J Cancer 2010; 127: 759–67.

    CAS  PubMed  Google Scholar 

  25. Munn D . Indoleamine 2,3-dioxygenase, tumor-induced tolerance and counter-regulation. Curr Opin Immunol 2006; 18: 220–225.

    Article  CAS  PubMed  Google Scholar 

  26. Balkwill F, Charles K, Mantovani A . Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005; 7: 211–217.

    Article  CAS  PubMed  Google Scholar 

  27. Martin-Orozco N, Dong D . Inhibitory costimulation and anti-tumor immunity. Semin Cancer Biol 2007; 17: 288–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wherry J . T cell exhaustion. Nat Immunol 2011; 12: 492–499.

    Article  CAS  PubMed  Google Scholar 

  29. Krummel M, Sullivan T, Allison J . Superantigen response and co-stimulation: CD28 and CTLA-4 have opposing effects on T cell expansion in vitro and in vivo. Int Immunol 1996; 8: 519–523.

    Article  CAS  PubMed  Google Scholar 

  30. Perez V, van Parijs L, Biuckians A, Zheng X, Strom T, Abbas A . Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 1997; 6: 411–417.

    Article  CAS  PubMed  Google Scholar 

  31. Yu X, Bidwell S, Martin P, Anasetti C . CD28-specific antibody prevents graft-versus-host disease in mice. J Immunol 2000; 164: 4564–4568.

    Article  CAS  PubMed  Google Scholar 

  32. Tacke M, Clark G, Dallman M, Hunig Y . Cellular distribution and costimulatory function of rat CD28. Regulated expression during thymocyte maturation and induction of cyclosporine A sensitivity of costimulated T cell responses by phorbol ester. J Immunol 1995; 154: 5121–5127.

    CAS  PubMed  Google Scholar 

  33. Dengler T, Szabo G, Sido B, Nottmeyer W, Zimmerman R, Vahl C et al. Prolonged allograft survival but not tolerance induction by modulating CD28 antibody JJ319 after high-responder heart transplantation. Transplantation 1999; 67: 392–398.

    Article  CAS  PubMed  Google Scholar 

  34. Haspot F, Seveno C, Dugast AS, Coulon F, Renaudin K, Usal C et al. Anti-CD28 antibody-induced kidney allograft tolerance related to tryptophan degradation and TCR-Class II-B7+ regulatory cells. Am J Transplant 2005; 5: 2339–2348.

    Article  CAS  PubMed  Google Scholar 

  35. Guillonneau C, Seveno C, Dugast AS, Li XL, Renaudin K, Haspot F et al. 2007. Anti-CD28 antibodies modify regulatory mechanisms and reinforce tolerance in CD40Ig-treated heart allograft recipients. J Immunol 2007; 179: 8164–8171.

    Article  CAS  PubMed  Google Scholar 

  36. Pandiyan P, Hege J, Krueger M, Quandt D, Brunner-Weinzierl C . High IFN-γ production of individual CD8 T lymphocytes is controlled by CD152 (CTLA-4). J Immunol 2007; 178: 2132–2140.

    Article  CAS  PubMed  Google Scholar 

  37. Beyersdorf N, Ding X, Blank G, Dennehy K, Kerkau T, Hunig T . Protection from graft-versus-host disease with a novel B7 binding site-specific mouse anti-mouse CD28 monoclonal antibody. Blood 2008; 112: 4328–4336.

    Article  CAS  PubMed  Google Scholar 

  38. Poirier N, Azimzadeh A, Zhang T, Dilek N, Mary C, Nguyen B et al. Inducing CTLA-4-dependent immune regulation by selective CD28 blockade promotes regulatory T cells in organ transplantation. Sci Transl Med 2010; 2: 17ra10.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chang J, Kim Y, Han S, Kang C . IFN-gamma-STAT 1 signal regulates the differentiation of inducible Treg: potential role for ROS-mediated apoptosis. Eur J Immunol 2009; 39: 1241–1251.

    Article  CAS  PubMed  Google Scholar 

  40. Singh N, Yamamoto M, Takami M, Seki Y, Takezaki M, Mellor A et al. CD4+CD25+ regulatory T cell resist a novel form of CD28- and Fas-dependent p53-induced T cell apoptosis. J Immunol 2010; 184: 94–104.

    Article  CAS  PubMed  Google Scholar 

  41. Carrio R, Torroella-Kouri M, Libreros S, Garcia-Areas R, Iragavarapu-Charyulu V, Lopez D . Decreased accumulation of immune regulatory cells is correlated to the antitumor effect of IFN-γ overexpression in the tumor. Int J Oncol 2011; 39: 1619–1627.

    CAS  PubMed  Google Scholar 

  42. Lee SW, Choi H, Eun SY, Fukuyama S, Croft M . Nitric oxide modulates TGF-β-directive signals to suppress Foxp3+ regulatory T cell differentiation and potentiate Th1 development. J Immunol 2011; 186: 6972–6980.

    Article  CAS  PubMed  Google Scholar 

  43. Baban B, Chandler P, Sharma M, Pihkala J, Koni P, Munn D et al. IDO activates regulatory T cells and blocks their conversion into Th17-like cells. J Immunol 2009; 183: 2475-2483.

    Article  CAS  PubMed  Google Scholar 

  44. Dugast AS, Vanhove B . Immune regulation by non-lymphoid cells in transplantation. Clin Exp Immunol 2009; 156: 25–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang R, Fang Q, Zhang L, Radvany L, Sharma A, Noben-Trauth N et al. CD28 ligation prevents bacterial toxin-induced septic shock in mice by inducing IL-10 expression. J Immunol 1997; 158: 2856–2861.

    CAS  PubMed  Google Scholar 

  46. Carter N, Vasconcellos R, Rosser E, Tulone C, Munoz-Suano A, Kamanaka M et al. 2011. Mice lacking endogenous IL-10-producing regulatory B cells develop exacerbated disease and present with an increased frequency of Th1/Th17 but a decrease in regulatory T cells. J Immunol 186: 5569–5579.

    Article  CAS  PubMed  Google Scholar 

  47. Biswas S, Mantovani A . Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010; 11: 889–896.

    Article  CAS  PubMed  Google Scholar 

  48. Geissmann F, Gordon S, Hume D, Mowat A, Randolph G . Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol 2010; 10: 453–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hoechst B, Gamrekelashvili J, Manns M, Greten T, Korangy F . Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood 2011; 117: 6523-6541.

    Article  Google Scholar 

  50. Blumenthal R, Campbell D, Hwang P, DeKruyff R, Frankel L, Umetsu D . Human alveolar macrophages induce functional inactivation in antigen-specific CD4 T cells. J Allergy Clin Immunol 2001; 107: 258–264.

    Article  CAS  PubMed  Google Scholar 

  51. Borowski A, Boesteanu A, Mueller Y, Carafieds C, Topham D, Altman J et al. Memory CD8+ T cells require CD28 costimulation. J Immunol 2007; 179: 6494–6503.

    Article  CAS  PubMed  Google Scholar 

  52. Curiel T, Wei S, Dong H, Alvarez X, Cheng P, Mottram P et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 2003; 5: 562–567.

    Article  Google Scholar 

  53. Latchman Y, Liang S, Wu Y, Chernova T, RSobel R, Klemm M et al. PD-L1 deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc Nat Acad Sci 2004; 101: 10691–10696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Keir M, Butte M, Freeman G, Sharpe A . PD-1 and its ligands in tolerance and immunity. Ann Rev Immunol 2008; 26: 677–704.

    Article  CAS  Google Scholar 

  55. Dong H, Zhu G, Tamada K, Chen L . B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999; 5: 1365–1369.

    Article  CAS  PubMed  Google Scholar 

  56. Lukacs-Kornek V, Malhotra D, Fletcher A, Acton S, Elpek K, Tayalia P et al. Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat Immunol 2011; 12: 1096–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yamazaki T, Akiba H, Koyanagi A, Azuma M, Yagita H, Okumura K . Blockade of B7-H1 on macrophages suppresses CD4+T cell proliferation by augmenting IFN-g-induced nitric oxide production. J Immunol 2005; 175: 1586–1592.

    Article  CAS  PubMed  Google Scholar 

  58. Loke P, Allison J . PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Nat Acad Sci 2003; 100: 5336-5341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Collins A, Brodie D, Gilbert R, Laboni A, Manso-Sancho R, Walse B et al. The interaction properties of costimulatory molecules revisited. Immunity 2002; 17: 201–210.

    Article  CAS  PubMed  Google Scholar 

  60. Butte M, Keir M, Phamduy T, Sharpe A, Freeman G . Programmed death-ligand 1 interacts specifically with B7-1 costimulatory molecule to inhibit T cell responses. Immunity 2007; 27: 111–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen L . Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 2004; 4: 336–350.

    Article  CAS  PubMed  Google Scholar 

  62. Suntharalingam G, Perry M, Ward S, Brett S, Castello-Cortes A, Brunner M et al. Cytokine storm in a phase I trial of the anti-CD28 monoclonal antibody TGN1412. New Engl J Med 2006; 355: 1018–1028.

    Article  CAS  PubMed  Google Scholar 

  63. Hansel T, Kropshofer H, Singer T, Mitchell J, George A . The safety and side effects of monoclonal antibodies. Nat Rev Drug Disc 2010; 9: 325–338.

    Article  CAS  Google Scholar 

  64. Stebbings R, Findlay L, Edwards C, Eastwood D, Bird C, North D et al. ‘Cytokine Storm’ in the phase I trial of monoclonal antibody TGN1412: understanding the causes to improve preclinical testing of immunotherapeutics. J Immunol 2007; 179: 3325–3331.

    Article  CAS  PubMed  Google Scholar 

  65. St. Clair E. The calm after the cytokine storm: lessons from the TGN1412 trial. J Clin Invest 2008; 118: 1344–1347.

    Article  Google Scholar 

  66. Sandilands G, Wilson M, Huser C, Jolly L, Sands W, McSharry C . Were monocytes responsible for initiating the cytokine storm in the TGH1412 clinical trial tragedy? Clin Exp Immunol 2011; 162: 516–27.

    Article  Google Scholar 

  67. Waldmann T . Effective cancer therapy through immunomodulation. Ann Rev Med 2006; 57: 65–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants (R15 AI 060356-01, R15 CA 136901-01) to J Riggs from the NIH AREA program. D Silberman was supported by fellowships from the New Jersey Commission for Cancer Research and the Rider University Marvin Talmadge Memorial Research Fund. A Walker was supported by a Rider University Undergraduate Research Scholar Award and was the recipient of a Van Arman Scholarship Award from the Inflammation Research Association. We are grateful to A Sepulveda, S Wisniewski, S Homan and D Marshall for mouse husbandry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E Riggs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silberman, D., Bucknum, A., Bartlett, T. et al. CD28 ligation increases macrophage suppression of T-cell proliferation. Cell Mol Immunol 9, 341–349 (2012). https://doi.org/10.1038/cmi.2012.13

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.13

Keywords

Search

Quick links