Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Receptor-interacting protein (RIP) kinase family

Abstract

Receptor-interacting protein (RIP) kinases are a group of threonine/serine protein kinases with a relatively conserved kinase domain but distinct non-kinase regions. A number of different domain structures, such as death and caspase activation and recruitment domain (CARD) domains, were found in different RIP family members, and these domains should be keys in determining the specific function of each RIP kinase. It is known that RIP kinases participate in different biological processes, including those in innate immunity, but their downstream substrates are largely unknown. This review will give an overview of the structures and functions of RIP family members, and an update of recent progress in RIP kinase research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P . RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death Differ 2007; 14: 400–410.

    CAS  PubMed  Google Scholar 

  2. Declercq W, Vanden Berghe T, Vandenabeele P . RIP kinases at the crossroads of cell death and survival. Cell 2009; 138: 229–232.

    CAS  PubMed  Google Scholar 

  3. Meylan E, Tschopp J . The RIP kinases: crucial integrators of cellular stress. Trends Biochem Sci 2005; 30: 151–159.

    CAS  PubMed  Google Scholar 

  4. Korr D, Toschi L, Donner P, Pohlenz HD, Kreft B, Weiss B . LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain. Cell Signal 2006; 18: 910–920.

    CAS  PubMed  Google Scholar 

  5. Stanger BZ, Leder P, Lee TH, Kim E, Seed B . RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 1995; 81: 513–523.

    CAS  PubMed  Google Scholar 

  6. Chaudhary PM, Eby M, Jasmin A, Bookwalter A, Murray J, Hood L . Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity 1997; 7: 821–830.

    CAS  PubMed  Google Scholar 

  7. Wen L, Zhuang L, Luo X, Wei P . TL1A-induced NF-kappaB activation and c-IAP2 production prevent DR3-mediated apoptosis in TF-1 cells. J Biol Chem 2003; 278: 39251–39258.

    CAS  PubMed  Google Scholar 

  8. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV . TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 1996; 4: 387–396.

    CAS  PubMed  Google Scholar 

  9. Varfolomeev EE, Boldin MP, Goncharov TM, Wallach D . A potential mechanism of “cross-talk” between the p55 tumor necrosis factor receptor and Fas/APO1: proteins binding to the death domains of the two receptors also bind to each other. J Exp Med 1996; 183: 1271–1275.

    CAS  PubMed  Google Scholar 

  10. Ahmad M, Srinivasula SM, Wang L, Talanian RV, Litwack G, Fernandes-Alnemri T et al. CRADD, a novel human apoptotic adaptor molecule for caspase-2, and FasL/tumor necrosis factor receptor-interacting protein RIP. Cancer Res 1997; 57: 615–619.

    CAS  PubMed  Google Scholar 

  11. Duan H, Dixit VM . RAIDD is a new ‘death’ adaptor molecule. Nature 1997; 385: 86–89.

    CAS  PubMed  Google Scholar 

  12. Inoue J, Ishida T, Tsukamoto N, Kobayashi N, Naito A, Azuma S et al. Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Exp Cell Res 2000; 254: 14–24.

    CAS  PubMed  Google Scholar 

  13. Bradley JR, Pober JS . Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene 2001; 20: 6482–6491.

    CAS  PubMed  Google Scholar 

  14. Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 2004; 5: 503–507.

    CAS  PubMed  Google Scholar 

  15. Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004; 430: 694–699.

    CAS  PubMed  Google Scholar 

  16. Kim JW, Joe CO, Choi EJ . Role of receptor-interacting protein in tumor necrosis factor-alpha -dependent MEKK1 activation. J Biol Chem 2001; 276: 27064–27070.

    CAS  PubMed  Google Scholar 

  17. Kurenova E, Xu LH, Yang X, Baldwin AS Jr, Craven RJ, Hanks SK et al. Focal adhesion kinase suppresses apoptosis by binding to the death domain of receptor-interacting protein. Mol Cell Biol 2004; 24: 4361–4371.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun X, Lee J, Navas T, Baldwin DT, Stewart TA, Dixit VM . RIP3, a novel apoptosis-inducing kinase. J Biol Chem 1999; 274: 16871–16875.

    CAS  PubMed  Google Scholar 

  19. Yang J, Lin Y, Guo Z, Cheng J, Huang J, Deng L et al. The essential role of MEKK3 in TNF-induced NF-kappaB activation. Nat Immunol 2001; 2: 620–624.

    CAS  PubMed  Google Scholar 

  20. Yu PW, Huang BC, Shen M, Quast J, Chan E, Xu X et al. Identification of RIP3, a RIP-like kinase that activates apoptosis and NFkappaB. Curr Biol 1999; 9: 539–542.

    CAS  PubMed  Google Scholar 

  21. Lee TH, Shank J, Cusson N, Kelliher MA . The kinase activity of Rip1 is not required for tumor necrosis factor-alpha-induced IkappaB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J Biol Chem 2004; 279: 33185–33191.

    CAS  PubMed  Google Scholar 

  22. Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P . The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 1998; 8: 297–303.

    CAS  PubMed  Google Scholar 

  23. Micheau O, Tschopp J . Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003; 114: 181–190.

    CAS  PubMed  Google Scholar 

  24. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr . NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998; 281: 1680–1683.

    CAS  PubMed  Google Scholar 

  25. Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J . NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol 2001; 21: 5299–5305.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang H, Lin Y, Li J, Pober JS, Min W . RIP1-mediated AIP1 phosphorylation at a 14-3-3-binding site is critical for tumor necrosis factor-induced ASK1-JNK/p38 activation. J Biol Chem 2007; 282: 14788–14796.

    CAS  PubMed  Google Scholar 

  27. Hsu H, Shu HB, Pan MG, Goeddel DV . TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 1996; 84: 299–308.

    CAS  PubMed  Google Scholar 

  28. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 2009; 137: 1112–1123.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. He S, Wang L, Miao L, Wang T, Du F, Zhao L et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 2009; 137: 1100–1111.

    CAS  PubMed  Google Scholar 

  30. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 2009; 325: 332–336.

    CAS  PubMed  Google Scholar 

  31. Sun X, Yin J, Starovasnik MA, Fairbrother WJ, Dixit VM . Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J Biol Chem 2002; 277: 9505–9511.

    CAS  PubMed  Google Scholar 

  32. Kuang AA, Diehl GE, Zhang J, Winoto A . FADD is required for DR4- and DR5-mediated apoptosis: lack of trail-induced apoptosis in FADD-deficient mouse embryonic fibroblasts. J Biol Chem 2000; 275: 25065–25068.

    CAS  PubMed  Google Scholar 

  33. Lawrence CP, Chow SC . FADD deficiency sensitises Jurkat T cells to TNF-alpha-dependent necrosis during activation-induced cell death. FEBS Lett 2005; 579: 6465–6472.

    CAS  PubMed  Google Scholar 

  34. Wilson NS, Dixit V, Ashkenazi A . Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol 2009; 10: 348–355.

    CAS  PubMed  Google Scholar 

  35. Inohara N, del Peso L, Koseki T, Chen S, Nunez G . RICK, a novel protein kinase containing a caspase recruitment domain, interacts with CLARP and regulates CD95-mediated apoptosis. J Biol Chem 1998; 273: 12296–12300.

    CAS  PubMed  Google Scholar 

  36. McCarthy JV, Ni J, Dixit VM . RIP2 is a novel NF-kappaB-activating and cell death-inducing kinase. J Biol Chem 1998; 273: 16968–16975.

    CAS  PubMed  Google Scholar 

  37. Thome M, Hofmann K, Burns K, Martinon F, Bodmer JL, Mattmann C et al. Identification of CARDIAK, a RIP-like kinase that associates with caspase-1. Curr Biol 1998; 8: 885–888.

    CAS  PubMed  Google Scholar 

  38. Navas TA, Baldwin DT, Stewart TA . RIP2 is a Raf1-activated mitogen-activated protein kinase kinase. J Biol Chem 1999; 274: 33684–33690.

    CAS  PubMed  Google Scholar 

  39. Jacquet S, Nishino Y, Kumphune S, Sicard P, Clark JE, Kobayashi KS et al. The role of RIP2 in p38 MAPK activation in the stressed heart. J Biol Chem 2008; 283: 11964–11971.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chin AI, Dempsey PW, Bruhn K, Miller JF, Xu Y, Cheng G . Involvement of receptor-interacting protein 2 in innate and adaptive immune responses. Nature 2002; 416: 190–194.

    CAS  PubMed  Google Scholar 

  41. Kobayashi K, Inohara N, Hernandez LD, Galan JE, Nunez G, Janeway CA et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 2002; 416: 194–199.

    CAS  PubMed  Google Scholar 

  42. Inohara N, Nunez G . NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 2003; 3: 371–382.

    CAS  PubMed  Google Scholar 

  43. Viala J, Sansonetti P, Philpott DJ . Nods and ‘intracellular’ innate immunity. C R Biol 2004; 327: 551–555.

    CAS  PubMed  Google Scholar 

  44. Nembrini C, Kisielow J, Shamshiev AT, Tortola L, Coyle AJ, Kopf M et al. The kinase activity of Rip2 determines its stability and consequently Nod1- and Nod2-mediated immune responses. J Biol Chem 2009; 284: 19183–19188.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Krieg A, Correa RG, Garrison JB, Le Negrate G, Welsh K, Huang Z et al. XIAP mediates NOD signaling via interaction with RIP2. Proc Natl Acad Sci USA 2009; 106: 14524–14529.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Li L, Bin LH, Li F, Liu Y, Chen D, Zhai Z et al. TRIP6 is a RIP2-associated common signaling component of multiple NF-kappaB activation pathways. J Cell Sci 2005; 118: 555–563.

    CAS  PubMed  Google Scholar 

  47. Clark NM, Marinis JM, Cobb BA, Abbott DW . MEKK4 sequesters RIP2 to dictate NOD2 signal specificity. Curr Biol 2008; 18: 1402–1408.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tao M, Scacheri PC, Marinis JM, Harhaj EW, Matesic LE, Abbott DW . ITCH K63-ubiquitinates the NOD2 binding protein, RIP2, to influence inflammatory signaling pathways. Curr Biol 2009; 19: 1255–1263.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Martinon F, Tschopp J . Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 2004; 117: 561–574.

    CAS  PubMed  Google Scholar 

  50. Krieg A, Le Negrate G, Reed JC . RIP2-beta: a novel alternative mRNA splice variant of the receptor interacting protein kinase RIP2. Mol Immunol 2009; 46: 1163–1170.

    CAS  PubMed  Google Scholar 

  51. Yin X, Krikorian P, Logan T, Csizmadia V . Induction of RIP-2 kinase by proinflammatory cytokines is mediated via NF-kappaB signaling pathways and involves a novel feed-forward regulatory mechanism. Mol Cell Biochem; 333: 251–259.

    PubMed  Google Scholar 

  52. Pazdernik NJ, Donner DB, Goebl MG, Harrington MA . Mouse receptor interacting protein 3 does not contain a caspase-recruiting or a death domain but induces apoptosis and activates NF-kappaB. Mol Cell Biol 1999; 19: 6500–6508.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Feng S, Ma L, Yang Y, Wu M . Truncated RIP3 (tRIP3) acts upstream of FADD to induce apoptosis in the human hepatocellular carcinoma cell line QGY-7703. Biochem Biophys Res Commun 2006; 347: 558–565.

    CAS  PubMed  Google Scholar 

  54. Newton K, Sun X, Dixit VM . Kinase RIP3 is dispensable for normal NF-kappa Bs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol Cell Biol 2004; 24: 1464–1469.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Feng S, Yang Y, Mei Y, Ma L, Zhu DE, Hoti N et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 2007; 19: 2056–2067.

    CAS  PubMed  Google Scholar 

  56. Bhr C, Rohwer A, Stempka L, Rincke G, Marks F, Gschwendt M . DIK, a novel protein kinase that interacts with protein kinase Cdelta. Cloning, characterization, and gene analysis. J Biol Chem 2000; 275: 36350–36357.

    Google Scholar 

  57. Chen L, Haider K, Ponda M, Cariappa A, Rowitch D, Pillai S . Protein kinase C-associated kinase (PKK), a novel membrane-associated, ankyrin repeat-containing protein kinase. J Biol Chem 2001; 276: 21737–21744.

    CAS  PubMed  Google Scholar 

  58. Holland P, Willis C, Kanaly S, Glaccum M, Warren A, Charrier K et al. RIP4 is an ankyrin repeat-containing kinase essential for keratinocyte differentiation. Curr Biol 2002; 12: 1424–1428.

    CAS  PubMed  Google Scholar 

  59. Meylan E, Martinon F, Thome M, Gschwendt M, Tschopp J . RIP4 (DIK/PKK), a novel member of the RIP kinase family, activates NF-kappa B and is processed during apoptosis. EMBO Rep 2002; 3: 1201–1208.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Muto A, Ruland J, McAllister-Lucas LM, Lucas PC, Yamaoka S, Chen FF et al. Protein kinase C-associated kinase (PKK) mediates Bcl10-independent NF-kappa B activation induced by phorbol ester. J Biol Chem 2002; 277: 31871–31876.

    CAS  PubMed  Google Scholar 

  61. Moran ST, Haider K, Ow Y, Milton P, Chen L, Pillai S . Protein kinase C-associated kinase can activate NFkappaB in both a kinase-dependent and a kinase-independent manner. J Biol Chem 2003; 278: 21526–21533.

    CAS  PubMed  Google Scholar 

  62. Cariappa A, Chen L, Haider K, Tang M, Nebelitskiy E, Moran ST et al. A catalytically inactive form of protein kinase C-associated kinase/receptor interacting protein 4, a protein kinase C beta-associated kinase that mediates NF-kappa B activation, interferes with early B cell development. J Immunol 2003; 171: 1875–1880.

    CAS  PubMed  Google Scholar 

  63. Hu Y, Baud V, Delhase M, Zhang P, Deerinck T, Ellisman M et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science 1999; 284: 316–320.

    CAS  PubMed  Google Scholar 

  64. Li Q, Lu Q, Hwang JY, Buscher D, Lee KF, Izpisua-Belmonte JC et al. IKK1-deficient mice exhibit abnormal development of skin and skeleton. Genes Dev 1999; 13: 1322–1328.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Takeda K, Takeuchi O, Tsujimura T, Itami S, Adachi O, Kawai T et al. Limb and skin abnormalities in mice lacking IKKalpha. Science 1999; 284: 313–316.

    CAS  PubMed  Google Scholar 

  66. Zha J, Zhou Q, Xu LG, Chen D, Li L, Zhai Z et al. RIP5 is a RIP-homologous inducer of cell death. Biochem Biophys Res Commun 2004; 319: 298–303.

    CAS  PubMed  Google Scholar 

  67. Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 2004; 44: 595–600.

    CAS  PubMed  Google Scholar 

  68. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004; 44: 601–607.

    CAS  PubMed  Google Scholar 

  69. Greggio E, Lewis PA, van der Brug MP, Ahmad R, Kaganovich A, Ding J et al. Mutations in LRRK2/dardarin associated with Parkinson disease are more toxic than equivalent mutations in the homologous kinase LRRK1. J Neurochem 2007; 102: 93–102.

    CAS  PubMed  Google Scholar 

  70. Haugarvoll K, Toft M, Ross OA, White LR, Aasly JO, Farrer MJ . Variants in the LRRK1 gene and susceptibility to Parkinson's disease in Norway. Neurosci Lett 2007; 416: 299–301.

    CAS  PubMed  Google Scholar 

  71. Elbaz A . LRRK2: bridging the gap between sporadic and hereditary Parkinson's disease. Lancet Neurol 2008; 7: 562–564.

    PubMed  Google Scholar 

  72. Anand VS, Braithwaite SP . LRRK2 in Parkinson's disease: biochemical functions. FEBS J 2009; 276: 6428–6435.

    CAS  PubMed  Google Scholar 

  73. Paisan-Ruiz C . LRRK2 gene variation and its contribution to Parkinson disease. Hum Mutat 2009; 30: 1153–1160.

    CAS  PubMed  Google Scholar 

  74. Greggio E, Jain S, Kingsbury A, Bandopadhyay R, Lewis P, Kaganovich A et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis 2006; 23: 329–341.

    CAS  PubMed  Google Scholar 

  75. Smith WW, Pei Z, Jiang H, Dawson VL, Dawson TM, Ross CA . Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 2006; 9: 1231–1233.

    CAS  PubMed  Google Scholar 

  76. Li X, Tan YC, Poulose S, Olanow CW, Huang XY, Yue Z . Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants. J Neurochem 2007; 103: 238–247.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lewis PA, Greggio E, Beilina A, Jain S, Baker A, Cookson MR . The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem Biophys Res Commun 2007; 357: 668–671.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Jorgensen ND, Peng Y, Ho CC, Rideout HJ, Petrey D, Liu P et al. The WD40 Domain Is Required for LRRK2 Neurotoxicity. PLoS One 2009; 4: e8463.

    PubMed  PubMed Central  Google Scholar 

  79. Benamer HT . The ancestry of LRRK2 Gly2019Ser parkinsonism. Lancet Neurol 2008; 7: 769–770; author reply 770–761.

    PubMed  Google Scholar 

  80. Braithwaite SP . LRRK2 in Parkinson's disease: building an understanding of disease etiology. FEBS J 2009; 276: 6427.

    CAS  PubMed  Google Scholar 

  81. Webber PJ, West AB . LRRK2 in Parkinson's disease: function in cells and neurodegeneration. FEBS J 2009; 276: 6436–6444.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Johansen KK, Wang L, Aasly JO, White LR, Matson WR, Henchcliffe C et al. Metabolomic profiling in LRRK2-related Parkinson's disease. PLoS One 2009; 4: e7551.

    PubMed  PubMed Central  Google Scholar 

  83. Li Y, Liu W, Oo TF, Wang L, Tang Y, Jackson-Lewis V et al. Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nat Neurosci 2009; 12: 826–828.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ding X, Goldberg MS . Regulation of LRRK2 stability by the E3 ubiquitin ligase CHIP. PLoS One 2009; 4: e5949.

    PubMed  PubMed Central  Google Scholar 

  85. Gloeckner CJ, Schumacher A, Boldt K, Ueffing M . The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. J Neurochem 2009; 109: 959–968.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahuai Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Lin, J. & Han, J. Receptor-interacting protein (RIP) kinase family. Cell Mol Immunol 7, 243–249 (2010). https://doi.org/10.1038/cmi.2010.10

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.10

Keywords

This article is cited by

Search

Quick links