Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity

Abstract

The mucosal immune system serves as our front-line defense against pathogens. It also tightly maintains immune tolerance to self-symbiotic bacteria, which are usually called commensals. Sensing both types of microorganisms is modulated by signalling primarily through various pattern-recognition receptors (PRRs) on barrier epithelial cells or immune cells. After sensing, proinflammatory molecules such as cytokines are released by these cells to mediate either defensive or tolerant responses. The interleukin-17 (IL-17) family members belong to a newly characterized cytokine subset that is critical for the maintenance of mucosal homeostasis. In this review, we will summarize recent progress on the diverse functions and signals of this family of cytokines at different mucosal edges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Iwasaki A, Medzhitov R . Control of adaptive immunity by the innate immune system. Nat Immunol 2015; 16: 343–353.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kawai T, Akira S . The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11: 373–384.

    CAS  PubMed  Google Scholar 

  3. Wu J, Chen ZJ . Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol 2014; 32: 461–488.

    CAS  PubMed  Google Scholar 

  4. Rathinam VA, Vanaja SK, Fitzgerald KA . Regulation of inflammasome signaling. Nat Immunol 2012; 13: 333–342.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Peterson LW, Artis D . Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 2014; 14: 141–153.

    CAS  PubMed  Google Scholar 

  6. Rescigno M . Functional specialization of antigen presenting cells in the gastrointestinal tract. Curr Opin Immunol 2010; 22: 131–136.

    CAS  PubMed  Google Scholar 

  7. Sonnenberg GF, Artis D . Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med 2015; 21: 698–708.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Eberl G, Colonna M, Di Santo JP, McKenzie AN . Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science 2015; 348: aaa6566.

    PubMed  PubMed Central  Google Scholar 

  9. Song X, Qian Y . IL-17 family cytokines mediated signaling in the pathogenesis of inflammatory diseases. Cell Signal 2013; 25: 2335–2347.

    CAS  PubMed  Google Scholar 

  10. Pappu R, Rutz S, Ouyang W . Regulation of epithelial immunity by IL-17 family cytokines. Trends Immunol 2012; 33: 343–349.

    CAS  PubMed  Google Scholar 

  11. Rouvier E, Luciani MF, Mattei MG, Denizot F, CTLA-8 Golstein P . cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol 1993; 150: 5445–5456.

    CAS  PubMed  Google Scholar 

  12. Song X, Qian Y . The activation and regulation of IL-17 receptor mediated signaling. Cytokine 2013; 62: 175–182.

    CAS  PubMed  Google Scholar 

  13. Korn T, Bettelli E, Oukka M, Kuchroo VK . IL-17 and Th17 Cells. Annu Rev Immunol 2009; 27: 485–517.

    CAS  PubMed  Google Scholar 

  14. Cua DJ, Tato CM . Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 2010; 10: 479–489.

    CAS  PubMed  Google Scholar 

  15. Gaffen SL . Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 2009; 9: 556–567.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Iwakura Y, Ishigame H, Saijo S, Nakae S . Functional specialization of interleukin-17 family members. Immunity 2011; 34: 149–162.

    CAS  PubMed  Google Scholar 

  17. Gerhardt S, Abbott WM, Hargreaves D, Pauptit RA, Davies RA, Needham MR et al. Structure of IL-17A in complex with a potent, fully human neutralizing antibody. J Mol Biol 2009; 394: 905–921.

    CAS  PubMed  Google Scholar 

  18. Hymowitz SG, Filvaroff EH, Yin JP, Lee J, Cai L, Risser P et al. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J 2001; 20: 5332–5341.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Johnston A, Fritz Y, Dawes SM, Diaconu D, Al-Attar PM, Guzman AM et al. Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation. J Immunol 2013; 190: 2252–2262.

    CAS  PubMed  Google Scholar 

  20. Yu HS, Angkasekwinai P, Chang SH, Chung Y, Dong C . Protease allergens induce the expression of IL-25 via Erk and p38 MAPK pathway. J Korean Med Sci 2010; 25: 829–834.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wright JF, Bennett F, Li B, Brooks J, Luxenberg DP, Whitters MJ et al. The human IL-17F/IL-17AA heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J Immunol 2008; 181: 2799–2805.

    CAS  PubMed  Google Scholar 

  22. Toy D, Kugler D, Wolfson M, Vanden Bos T, Gurgel J, Derry J et al. Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J Immunol 2006; 177: 36–39.

    CAS  PubMed  Google Scholar 

  23. Kuestner RE, Taft DW, Haran A, Brandt CS, Brender T, Lum K et al. Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J Immunol 2007; 179: 5462–5473.

    CAS  PubMed  Google Scholar 

  24. Rickel EA, Siegel LA, Yoon BR, Rottman JB, Kugler DG, Swart DA et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J Immunol 2008; 181: 4299–4310.

    CAS  PubMed  Google Scholar 

  25. Song X, Zhu S, Shi P, Liu Y, Shi Y, Levin SD et al. IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens. Nat Immunol 2011; 12: 1151–1158.

    CAS  PubMed  Google Scholar 

  26. Ramirez-Carrozzi V, Sambandam A, Luis E, Lin Z, Jeet S, Lesch J et al. IL-17C regulates the innate immune function of epithelial cells in an autocrine manner. Nat Immunol 2011; 12: 1159–1166.

    CAS  PubMed  Google Scholar 

  27. Chang SH, Reynolds JM, Pappu BP, Chen G, Martinez GJ, Dong C . Interleukin-17C promotes Th17 cell responses and autoimmune disease via interleukin-17 receptor E. Immunity 2011; 35: 611–621.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee J, Ho WH, Maruoka M, Corpuz RT, Baldwin DT, Foster JS et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J Biol Chem 2001; 276: 1660–1664.

    CAS  PubMed  Google Scholar 

  29. Shi Y, Ullrich SJ, Zhang J, Connolly K, Grzegorzewski KJ, Barber MC et al. A novel cytokine receptor-ligand pair. Identification, molecular characterization, and in vivo immunomodulatory activity. J Biol Chem 2000; 275: 19167–19176.

    CAS  PubMed  Google Scholar 

  30. Ron D, Fuchs Y, Chorev DS . Know thy Sef: a novel class of feedback antagonists of receptor tyrosine kinase signaling. Int J Biochem Cell Biol 2008; 40: 2040–2052.

    CAS  PubMed  Google Scholar 

  31. Rong Z, Wang A, Li Z, Ren Y, Cheng L, Li Y et al. IL-17RD (Sef or IL-17RLM) interacts with IL-17 receptor and mediates IL-17 signaling. Cell Res 2009; 19: 208–215.

    CAS  PubMed  Google Scholar 

  32. Mellett M, Atzei P, Horgan A, Hams E, Floss T, Wurst W et al. Orphan receptor IL-17RD tunes IL-17A signalling and is required for neutrophilia. Nat Commun 2012; 3: 1119.

    PubMed  Google Scholar 

  33. Mellett M, Atzei P, Bergin R, Horgan A, Floss T, Wurst W et al. Orphan receptor IL-17RD regulates Toll-like receptor signalling via SEFIR/TIR interactions. Nat Commun 2015; 6: 6669.

    CAS  PubMed  Google Scholar 

  34. Hartupee J, Liu C, Novotny M, Li X, Hamilton T . IL-17 enhances chemokine gene expression through mRNA stabilization. J Immunol 2007; 179: 4135–4141.

    CAS  PubMed  Google Scholar 

  35. Qian Y, Liu C, Hartupee J, Altuntas CZ, Gulen MF, Jane-Wit D et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat Immunol 2007; 8: 247–256.

    CAS  PubMed  Google Scholar 

  36. Chang SH, Park H, Dong C . Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J Biol Chem 2006; 281: 35603–35607.

    CAS  PubMed  Google Scholar 

  37. Liu C, Qian W, Qian Y, Giltiay NV, Lu Y, Swaidani S et al. Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. Sci Signal 2009; 2: ra63.

    PubMed  PubMed Central  Google Scholar 

  38. Hartupee J, Liu C, Novotny M, Sun D, Li X, Hamilton TA . IL-17 signaling for mRNA stabilization does not require TNF receptor-associated factor 6. J Immunol 2009; 182: 1660–1666.

    CAS  PubMed  Google Scholar 

  39. Sun D, Novotny M, Bulek K, Liu C, Li X, Hamilton T . Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). Nat Immunol 2011; 12: 853–860.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bulek K, Liu C, Swaidani S, Wang L, Page RC, Gulen MF et al. The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation. Nat Immunol 2011; 12: 844–852.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Herjan T, Yao P, Qian W, Li X, Liu C, Bulek K et al. HuR Is Required for IL-17-Induced Act1-Mediated CXCL1 and CXCL5 mRNA Stabilization. J Immunol 2013; 191: 640–649.

    CAS  PubMed  Google Scholar 

  42. Wu L, Chen X, Zhao J, Martin B, Zepp JA, Ko JS et al. A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4-ERK5 axis. J Exp Med 2015; 212: 1571–1587.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang C, Wu L, Bulek K, Martin BN, Zepp JA, Kang Z et al. The psoriasis-associated D10N variant of the adaptor Act1 with impaired regulation by the molecular chaperone hsp90. Nat Immunol 2013; 14: 72–81.

    CAS  PubMed  Google Scholar 

  44. Zhu S, Pan W, Song X, Liu Y, Shao X, Tang Y et al. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-alpha. Nat Med 2012; 18: 1077–1086.

    CAS  PubMed  Google Scholar 

  45. Yang XO, Chang SH, Park H, Nurieva R, Shah B, Acero L et al. Regulation of inflammatory responses by IL-17F. J Exp Med 2008; 205: 1063–1075.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Shen F, Li N, Gade P, Kalvakolanu DV, Weibley T, Doble B et al. IL-17 receptor signaling inhibits C/EBPbeta by sequential phosphorylation of the regulatory 2 domain. Sci Signal 2009; 2: ra8.

    PubMed  PubMed Central  Google Scholar 

  47. Zhu S, Pan W, Shi P, Gao H, Zhao F, Song X et al. Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling. J Exp Med 2010; 207: 2647–2662.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zepp JA, Liu C, Qian W, Wu L, Gulen MF, Kang Z et al. Cutting edge: TNF receptor-associated factor 4 restricts IL-17-mediated pathology and signaling processes. J Immunol 2012; 189: 33–37.

    CAS  PubMed  Google Scholar 

  49. Shi P, Zhu S, Lin Y, Liu Y, Liu Y, Chen Z et al. Persistent stimulation with interleukin-17 desensitizes cells through SCFbeta-TrCP-mediated degradation of Act1. Sci Signal 2011; 4: ra73.

    PubMed  Google Scholar 

  50. Qu F, Gao H, Zhu S, Shi P, Zhang Y, Liu Y et al. TRAF6 dependent Act1 phosphorylation by the IKK-related kinases suppresses IL-17-induced NF-kappaB activation. Mol Cell Biol 2012; 32: 3925–3937.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhong B, Liu X, Wang X, Chang SH, Liu X, Wang A et al. Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nat Immunol 2012; 13: 1110–1117.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Garg AV, Ahmed M, Vallejo AN, Ma A, Gaffen SL . The deubiquitinase A20 mediates feedback inhibition of interleukin-17 receptor signaling. Sci Signal 2013; 6: ra44.

    PubMed  PubMed Central  Google Scholar 

  53. Garg AV, Amatya N, Chen K, Cruz JA, Grover P, Whibley N et al. MCPIP1 endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation. Immunity 2015; 43: 475–487.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Claudio E, Sonder SU, Saret S, Carvalho G, Ramalingam TR, Wynn TA et al. The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation. J Immunol 2009; 182: 1617–1630.

    CAS  PubMed  Google Scholar 

  55. Swaidani S, Bulek K, Kang Z, Gulen MF, Liu C, Yin W et al. T cell-derived Act1 is necessary for IL-25-mediated Th2 responses and allergic airway inflammation. J Immunol 2011; 187: 3155–3164.

    CAS  PubMed  Google Scholar 

  56. Swaidani S, Bulek K, Kang Z, Liu C, Lu Y, Yin W et al. The critical role of epithelial-derived Act1 in IL-17- and IL-25-mediated pulmonary inflammation. J Immunol 2009; 182: 1631–1640.

    CAS  PubMed  Google Scholar 

  57. Kang Z, Swaidani S, Yin W, Wang C, Barlow JL, Gulen MF et al. Epithelial cell-specific Act1 adaptor mediates interleukin-25-dependent helminth expulsion through expansion of Lin(-)c-Kit(+) innate cell population. Immunity 2012; 36: 821–833.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Maezawa Y, Nakajima H, Suzuki K, Tamachi T, Ikeda K, Inoue J et al. Involvement of TNF receptor-associated factor 6 in IL-25 receptor signaling. J Immunol 2006; 176: 1013–1018.

    CAS  PubMed  Google Scholar 

  59. Zepp JA, Wu L, Qian W, Ouyang W, Aronica M, Erzurum S et al. TRAF4-SMURF2-mediated DAZAP2 degradation is critical for IL-25 signaling and allergic airway inflammation. J Immunol 2015; 194: 2826–2837.

    CAS  PubMed  Google Scholar 

  60. Wu L, Zepp JA, Qian W, Martin BN, Ouyang W, Yin W et al. A novel IL-25 signaling pathway through STAT5. J Immunol 2015; 194: 4528–4534.

    CAS  PubMed  Google Scholar 

  61. Yamaguchi Y, Fujio K, Shoda H, Okamoto A, Tsuno NH, Takahashi K et al. IL-17B and IL-17C are associated with TNF-alpha production and contribute to the exacerbation of inflammatory arthritis. J Immunol 2007; 179: 7128–7136.

    CAS  PubMed  Google Scholar 

  62. Wu HH, Hwang-Verslues WW, Lee WH, Huang CK, Wei PC, Chen CL et al. Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines. J Exp Med 2015; 212: 333–349.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang CK, Yang CY, Jeng YM, Chen CL, Wu HH, Chang YC et al. Autocrine/paracrine mechanism of interleukin-17B receptor promotes breast tumorigenesis through NF-kappaB-mediated antiapoptotic pathway. Oncogene 2014; 33: 2968–2977.

    PubMed  Google Scholar 

  64. Furuta S, Jeng YM, Zhou L, Huang L, Kuhn I, Bissell MJ et al. IL-25 causes apoptosis of IL-25R-expressing breast cancer cells without toxicity to nonmalignant cells. Sci Transl Med 2011; 3: 78ra31.

    PubMed  PubMed Central  Google Scholar 

  65. Reynolds JM, Lee YH, Shi Y, Wang X, Angkasekwinai P, Nallaparaju KC et al. Interleukin-17B antagonizes interleukin-25-mediated mucosal inflammation. Immunity 2015; 42: 692–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Li H, Chen J, Huang A, Stinson J, Heldens S, Foster J et al. Cloning and characterization of IL-17B and IL-17C, two new members of the IL-17 cytokine family. Proc Natl Acad Sci USA 2000; 97: 773–778.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hurst SD, Muchamuel T, Gorman DM, Gilbert JM, Clifford T, Kwan S et al. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J Immunol 2002; 169: 443–453.

    CAS  PubMed  Google Scholar 

  68. O'Sullivan T, Saddawi-Konefka R, Gross E, Tran M, Mayfield SP, Ikeda H et al. Interleukin-17D mediates tumor rejection through recruitment of natural killer cells. Cell Rep 2014; 7: 989–998.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Saddawi-Konefka R, O'Sullivan T, Gross ET, Washington Jr A, Bui JD . Tumor-expressed IL-17D recruits NK cells to reject tumors. Oncoimmunology 2014; 3: e954853.

    PubMed  Google Scholar 

  70. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 2001; 194: 519–527.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kudva A, Scheller EV, Robinson KM, Crowe CR, Choi SM, Slight SR et al. Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice. J Immunol 2011; 186: 1666–1674.

    CAS  PubMed  Google Scholar 

  72. Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 2009; 30: 108–119.

    CAS  PubMed  Google Scholar 

  73. Aujla SJ, Chan YR, Zheng M, Fei M, Askew DJ, Pociask DA et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med 2008; 14: 275–281.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139: 485–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y, Narushima S et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 2015; 63: 367–380.

    Google Scholar 

  76. Trautwein-Weidner K, Gladiator A, Nur S, Diethelm P, LeibundGut-Landmann S . IL-17-mediated antifungal defense in the oral mucosa is independent of neutrophils. Mucosal Immunol 2015; 8: 221–231.

    CAS  PubMed  Google Scholar 

  77. Saijo S, Ikeda S, Yamabe K, Kakuta S, Ishigame H, Akitsu A et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 2010; 32: 681–691.

    CAS  PubMed  Google Scholar 

  78. Conti HR, Shen F, Nayyar N, Stocum E, Sun JN, Lindemann MJ et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med 2009; 206: 299–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang W, Na L, Fidel PL, Schwarzenberger P . Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis 2004; 190: 624–631.

    CAS  PubMed  Google Scholar 

  80. Bar E, Whitney PG, Moor K, Reis e Sousa C, LeibundGut-Landmann S . IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells. Immunity 2014; 40: 117–127.

    CAS  PubMed  Google Scholar 

  81. Taylor PR, Roy S, Leal Jr SM, Sun Y, Howell SJ, Cobb BA et al. Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORgammat and dectin-2. Nat Immunol 2014; 15: 143–151.

    CAS  PubMed  Google Scholar 

  82. Lin Y, Ritchea S, Logar A, Slight S, Messmer M, Rangel-Moreno J et al. Interleukin-17 is required for T helper 1 cell immunity and host resistance to the intracellular pathogen Francisella tularensis. Immunity 2009; 31: 799–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Khader SA, Pearl JE, Sakamoto K, Gilmartin L, Bell GK, Jelley-Gibbs DM et al. IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-gamma responses if IL-12p70 is available. J Immunol 2005; 175: 788–795.

    CAS  PubMed  Google Scholar 

  84. Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K et al. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. J Immunol 2007; 178: 3786–3796.

    CAS  PubMed  Google Scholar 

  85. Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 2007; 8: 369–377.

    CAS  PubMed  Google Scholar 

  86. Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003; 52: 65–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sugihara T, Kobori A, Imaeda H, Tsujikawa T, Amagase K, Takeuchi K et al. The increased mucosal mRNA expressions of complement C3 and interleukin-17 in inflammatory bowel disease. Clin Exp Immunol 2010; 160: 386–393.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Seiderer J, Elben I, Diegelmann J, Glas J, Stallhofer J, Tillack C et al. Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): upregulated colonic IL-17F expression in active Crohn's disease and analysis of the IL17F p.His161Arg polymorphism in IBD. Inflamm Bowel Dis 2008; 14: 437–445.

    PubMed  Google Scholar 

  89. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314: 1461–1463.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 2008; 40: 955–962.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang K, Zhang H, Kugathasan S, Annese V, Bradfield JP, Russell RK et al. Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn Disease. Am J Hum Genet 2009; 84: 399–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ciccacci C, Biancone L, Di Fusco D, Ranieri M, Condino G, Giardina E et al. TRAF3IP2 gene is associated with cutaneous extraintestinal manifestations in inflammatory bowel disease. J Crohns Colitis 2013; 7: 44–52.

    PubMed  Google Scholar 

  93. Ogawa A, Andoh A, Araki Y, Bamba T, Fujiyama Y . Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin Immunol 2004; 110: 55–62.

    CAS  PubMed  Google Scholar 

  94. Ito R, Kita M, Shin-Ya M, Kishida T, Urano A, Takada R et al. Involvement of IL-17A in the pathogenesis of DSS-induced colitis in mice. Biochem Biophys Res Commun 2008; 377: 12–16.

    CAS  PubMed  Google Scholar 

  95. Song X, Dai D, He X, Zhu S, Yao Y, Gao H et al. Growth Factor FGF2 Cooperates with Interleukin-17 to Repair Intestinal Epithelial Damage. Immunity 2015; 43: 488–501.

    CAS  PubMed  Google Scholar 

  96. Johansen C, Usher PA, Kjellerup RB, Lundsgaard D, Iversen L, Kragballe K . Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. The British journal of dermatology 2009; 160: 319–324.

    CAS  PubMed  Google Scholar 

  97. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007; 8: 950–957.

    CAS  PubMed  Google Scholar 

  98. Genetic Analysis of Psoriasis C the Wellcome Trust Case Control C, Strange A, Capon F, Spencer CC, Knight J et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet 2010; 42: 985–990.

    Google Scholar 

  99. Ellinghaus E, Ellinghaus D, Stuart PE, Nair RP, Debrus S, Raelson JV et al. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat Genet 2010; 42: 991–995.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet 2007; 80: 273–290.

    CAS  PubMed  Google Scholar 

  101. Rizzo HL, Kagami S, Phillips KG, Kurtz SE, Jacques SL, Blauvelt A . IL-23-mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A. J Immunol 2011; 186: 1495–1502.

    CAS  PubMed  Google Scholar 

  102. Cai Y, Shen X, Ding C, Qi C, Li K, Li X et al. Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity 2011; 35: 596–610.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 2009; 182: 5836–5845.

    CAS  PubMed  Google Scholar 

  104. El Malki K, Karbach SH, Huppert J, Zayoud M, Reissig S, Schuler R et al. An alternative pathway of imiquimod-induced psoriasis-like skin inflammation in the absence of interleukin-17 receptor a signaling. J Invest Dermatol 2013; 133: 441–451.

    CAS  PubMed  Google Scholar 

  105. Ha HL, Wang H, Pisitkun P, Kim JC, Tassi I, Tang W et al. IL-17 drives psoriatic inflammation via distinct, target cell-specific mechanisms. Proc Natl Acad Sci USA 2014; 111: E3422–E3431.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Nakajima K, Kanda T, Takaishi M, Shiga T, Miyoshi K, Nakajima H et al. Distinct roles of IL-23 and IL-17 in the development of psoriasis-like lesions in a mouse model. J Immunol 2011; 186: 4481–4489.

    CAS  PubMed  Google Scholar 

  107. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006; 203: 2271–2279.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Teunissen MB, Koomen CW, de Waal Malefyt R, Wierenga EA, Bos JD . Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Invest Dermatol 1998; 111: 645–649.

    CAS  PubMed  Google Scholar 

  109. Chiricozzi A, Guttman-Yassky E, Suarez-Farinas M, Nograles KE, Tian S, Cardinale I et al. Integrative responses to IL-17 and TNF-alpha in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol 2011; 131: 677–687.

    CAS  PubMed  Google Scholar 

  110. Gaffen SL, Jain R, Garg AV, Cua DJ . The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol 2014; 14: 585–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Molet S, Hamid Q, Davoine F, Nutku E, Taha R, Page N et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. The Journal of allergy and Clin Immunol 2001; 108: 430–438.

    CAS  Google Scholar 

  112. Doe C, Bafadhel M, Siddiqui S, Desai D, Mistry V, Rugman P et al. Expression of the T helper 17-associated cytokines IL-17A and IL-17F in asthma and COPD. Chest 2010; 138: 1140–1147.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Al-Ramli W, Prefontaine D, Chouiali F, Martin JG, Olivenstein R, Lemiere C et al. T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. The Journal of allergy and Clin Immunol 2009; 123: 1185–1187.

    CAS  Google Scholar 

  114. McKinley L, Alcorn JF, Peterson A, Dupont RB, Kapadia S, Logar A et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J Immunol 2008; 181: 4089–4097.

    CAS  PubMed  Google Scholar 

  115. Nakae S, Komiyama Y, Nambu A, Sudo K, Iwase M, Homma I et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 2002; 17: 375–387.

    CAS  PubMed  Google Scholar 

  116. Lajoie S, Lewkowich IP, Suzuki Y, Clark JR, Sproles AA, Dienger K et al. Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nat Immunol 2010; 11: 928–935.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Guo C, Chen G, Ge R . IL-23, rather than IL-17, is crucial for the development of ovalbumin-induced allergic rhinitis. Molecular immunology. 2015 67(2 Pt B) 436–443.

    CAS  PubMed  Google Scholar 

  118. Huang F, Kao CY, Wachi S, Thai P, Ryu J, Wu R . Requirement for both JAK-mediated PI3K signaling and ACT1/TRAF6/TAK1-dependent NF-kappaB activation by IL-17A in enhancing cytokine expression in human airway epithelial cells. J Immunol 2007; 179: 6504–6513.

    CAS  PubMed  Google Scholar 

  119. Kao CY, Huang F, Chen Y, Thai P, Wachi S, Kim C et al. Up-regulation of CC chemokine ligand 20 expression in human airway epithelium by IL-17 through a JAK-independent but MEK/NF-kappaB-dependent signaling pathway. J Immunol 2005; 175: 6676–6685.

    CAS  PubMed  Google Scholar 

  120. Kao CY, Chen Y, Thai P, Wachi S, Huang F, Kim C et al. IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. J Immunol 2004; 173: 3482–3491.

    CAS  PubMed  Google Scholar 

  121. Wiehler S, Proud D . Interleukin-17A modulates human airway epithelial responses to human rhinovirus infection. American journal of physiology Lung cellular and molecular physiology 2007; 293: L505–L515.

    CAS  PubMed  Google Scholar 

  122. Mori K, Fujisawa T, Kusagaya H, Yamanaka K, Hashimoto D, Enomoto N et al. Synergistic Proinflammatory Responses by IL-17A and Toll-Like Receptor 3 in Human Airway Epithelial Cells. PLoS ONE 2015; 10: e0139491.

    PubMed  PubMed Central  Google Scholar 

  123. Zijlstra GJ, Ten Hacken NH, Hoffmann RF, van Oosterhout AJ, Heijink IH . Interleukin-17A induces glucocorticoid insensitivity in human bronchial epithelial cells. The European respiratory journal 2012; 39: 439–445.

    CAS  PubMed  Google Scholar 

  124. Kudo M, Melton AC, Chen C, Engler MB, Huang KE, Ren X et al. IL-17A produced by alphabeta T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction. Nat Med 2012; 18: 547–554.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Fujisawa T, Velichko S, Thai P, Hung LY, Huang F, Wu R . Regulation of airway MUC5AC expression by IL-1beta and IL-17A; the NF-kappaB paradigm. J Immunol 2009; 183: 6236–6243.

    CAS  PubMed  Google Scholar 

  126. Fujisawa T, Chang MM, Velichko S, Thai P, Hung LY, Huang F et al. NF-kappaB mediates IL-1beta- and IL-17A-induced MUC5B expression in airway epithelial cells. Am J Respir Cell Mol Biol 2011; 45: 246–252.

    CAS  PubMed  Google Scholar 

  127. Chae WJ, Gibson TF, Zelterman D, Hao L, Henegariu O, Bothwell AL . Ablation of IL-17A abrogates progression of spontaneous intestinal tumorigenesis. Proc Natl Acad Sci USA 2010; 107: 5540–5544.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Hyun YS, Han DS, Lee AR, Eun CS, Youn J, Kim HY . Role of IL-17A in the development of colitis-associated cancer. Carcinogenesis 2012; 33: 931–936.

    CAS  PubMed  Google Scholar 

  129. Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 2012; 491: 254–258.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17T cell responses. Nat Med 2009; 15: 1016–1022.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang K, Kim MK, Di Caro G, Wong J, Shalapour S, Wan J et al. Interleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity 2014; 41: 1052–1063.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang L, Yi T, Zhang W, Pardoll DM, Yu H . IL-17 enhances tumor development in carcinogen-induced skin cancer. Cancer Res. 2010; 70: 10112–10120.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K et al. IL-23 promotes tumour incidence and growth. Nature 2006; 442: 461–465.

    CAS  PubMed  Google Scholar 

  134. He D, Li H, Yusuf N, Elmets CA, Athar M, Katiyar SK et al. IL-17 mediated inflammation promotes tumor growth and progression in the skin. PLoS ONE 2012; 7: e32126.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Chang SH, Mirabolfathinejad SG, Katta H, Cumpian AM, Gong L, Caetano MS et al. T helper 17 cells play a critical pathogenic role in lung cancer. Proc Natl Acad Sci USA 2014; 111: 5664–5669.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Chae WJ, Bothwell AL . IL-17F deficiency inhibits small intestinal tumorigenesis in ApcMin/+ mice. Biochem Biophys Res Commun 2011; 414: 31–36.

    CAS  PubMed  Google Scholar 

  137. Tong Z, Yang XO, Yan H, Liu W, Niu X, Shi Y et al. A protective role by interleukin-17F in colon tumorigenesis. PLoS ONE 2012; 7: e34959.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Fallon PG, Ballantyne SJ, Mangan NE, Barlow JL, Dasvarma A, Hewett DR et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J Exp Med 2006; 203: 1105–1116.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhao A, Urban Jr JF, Sun R, Stiltz J, Morimoto M, Notari L et al. Critical role of IL-25 in nematode infection-induced alterations in intestinal function. J Immunol 2010; 185: 6921–6929.

    CAS  PubMed  Google Scholar 

  140. Owyang AM, Zaph C, Wilson EH, Guild KJ, McClanahan T, Miller HR et al. Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J Exp Med 2006; 203: 843–849.

    PubMed  PubMed Central  Google Scholar 

  141. Su J, Chen T, Ji XY, Liu C, Yadav PK, Wu R et al. IL-25 downregulates Th1/Th17 immune response in an IL-10-dependent manner in inflammatory bowel disease. Inflamm Bowel Dis. 2013 Mar -Apr 19: 720–728.

    Google Scholar 

  142. McHenga SS, Wang D, Janneh FM, Feng Y, Zhang P, Li Z et al. Differential dose effects of recombinant IL-25 on the development of dextran sulfate sodium-induced colitis. Inflamm Res 2010; 59: 879–887.

    PubMed  Google Scholar 

  143. McHenga SS, Wang D, Li C, Shan F, Lu C . Inhibitory effect of recombinant IL-25 on the development of dextran sulfate sodium-induced experimental colitis in mice. Cell Mol Immunol 2008; 5: 425–431.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Caruso R, Sarra M, Stolfi C, Rizzo A, Fina D, Fantini MC et al. Interleukin-25 inhibits interleukin-12 production and Th1 cell-driven inflammation in the gut. Gastroenterology 2009; 136: 2270–2279.

    CAS  PubMed  Google Scholar 

  145. Rizzo A, Monteleone I, Fina D, Stolfi C, Caruso R, Fantini MC et al. Inhibition of colitis by IL-25 associates with induction of alternatively activated macrophages. Inflamm Bowel Dis 2012; 18: 449–459.

    PubMed  Google Scholar 

  146. Wang AJ, Smith A, Li Y, Urban Jr JF, Ramalingam TR, Wynn TA et al. Genetic deletion of IL-25 (IL-17E) confers resistance to dextran sulfate sodium-induced colitis in mice. Cell & bioscience 2014; 4: 72.

    Google Scholar 

  147. Camelo A, Barlow JL, Drynan LF, Neill DR, Ballantyne SJ, Wong SH et al. Blocking IL-25 signalling protects against gut inflammation in a type-2 model of colitis by suppressing nuocyte and NKT derived IL-13. Journal of gastroenterology 2012; 47: 1198–1211.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Xu G, Zhang L, Wang DY, Xu R, Liu Z, Han DM et al. Opposing roles of IL-17A and IL-25 in the regulation of TSLP production in human nasal epithelial cells. Allergy 2010; 65: 581–589.

    CAS  PubMed  Google Scholar 

  149. Corrigan CJ, Wang W, Meng Q, Fang C, Eid G, Caballero MR et al. Allergen-induced expression of IL-25 and IL-25 receptor in atopic asthmatic airways and late-phase cutaneous responses. The Journal of allergy and Clin Immunol 2011; 128: 116–124.

    CAS  Google Scholar 

  150. Tamachi T, Maezawa Y, Ikeda K, Kagami S, Hatano M, Seto Y et al. IL-25 enhances allergic airway inflammation by amplifying a TH2 cell-dependent pathway in mice. The Journal of allergy and Clin Immunol 2006; 118: 606–614.

    CAS  Google Scholar 

  151. Angkasekwinai P, Park H, Wang YH, Wang YH, Chang SH, Corry DB et al. Interleukin 25 promotes the initiation of proallergic type 2 responses. J Exp Med 2007; 204: 1509–1517.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Ballantyne SJ, Barlow JL, Jolin HE, Nath P, Williams AS, Chung KF et al. Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. The Journal of allergy and Clin Immunol 2007; 120: 1324–1331.

    CAS  Google Scholar 

  153. Angkasekwinai P, Chang SH, Thapa M, Watarai H, Dong C . Regulation of IL-9 expression by IL-25 signaling. Nat Immunol 2010; 11: 250–256.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Petersen BC, Budelsky AL, Baptist AP, Schaller MA, Lukacs NW . Interleukin-25 induces type 2 cytokine production in a steroid-resistant interleukin-17RB+ myeloid population that exacerbates asthmatic pathology. Nat Med 2012; 18: 751–758.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Sharkhuu T, Matthaei KI, Forbes E, Mahalingam S, Hogan SP, Hansbro PM et al. Mechanism of interleukin-25 (IL-17E)-induced pulmonary inflammation and airways hyper-reactivity. Clinical and experimental allergy: journal of the British Society for Allergy and Clin Immunol 2006; 36: 1575–1583.

    CAS  Google Scholar 

  156. Kawashima S, Hirose K, Takahashi K, Tamachi T, Ikeda K, Tokoyoda K et al. Interleukin-25 induces pulmonary arterial remodeling via natural killer T cell-dependent mechanisms. International archives of allergy and immunology 2013; 161 (Suppl 2): 118–124.

    CAS  PubMed  Google Scholar 

  157. Corrigan CJ, Wang W, Meng Q, Fang C, Wu H, Reay V et al. T-helper cell type 2 (Th2) memory T cell-potentiating cytokine IL-25 has the potential to promote angiogenesis in asthma. Proc Natl Acad Sci USA 2011; 108: 1579–1584.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Gregory LG, Jones CP, Walker SA, Sawant D, Gowers KH, Campbell GA et al. IL-25 drives remodelling in allergic airways disease induced by house dust mite. Thorax 2013; 68: 82–90.

    PubMed  Google Scholar 

  159. Van Maele L, Carnoy C, Cayet D, Songhet P, Dumoutier L, Ferrero I et al. TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3(neg)CD127+ immune cells in spleen and mucosa. J Immunol 2010; 185: 1177–1185.

    CAS  PubMed  Google Scholar 

  160. Wu Q, Martin RJ, Rino JG, Breed R, Torres RM, Chu HW . IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection. Microbes and infection / Institut Pasteur 2007; 9: 78–86.

    CAS  Google Scholar 

  161. Huang J, Meng S, Hong S, Lin X, Jin W, Dong C . IL-17C is required for lethal inflammation during systemic fungal infection. Cell Mol Immunol; e-pub ahead of print 13 July 2015; doi:10.1038/cmi.2015.56.

    Google Scholar 

  162. Conti HR, Whibley N, Coleman BM, Garg AV, Jaycox JR, Gaffen SL . Signaling through IL-17C/IL-17RE is dispensable for immunity to systemic, oral and cutaneous candidiasis. PLoS ONE 2015; 10: e0122807.

    PubMed  PubMed Central  Google Scholar 

  163. Pfeifer P, Voss M, Wonnenberg B, Hellberg J, Seiler F, Lepper PM et al. IL-17C is a mediator of respiratory epithelial innate immune response. Am J Respir Cell Mol Biol 2013; 48: 415–421.

    CAS  PubMed  Google Scholar 

  164. Holland DB, Bojar RA, Farrar MD, Holland KT . Differential innate immune responses of a living skin equivalent model colonized by Staphylococcus epidermidis or Staphylococcus aureus. FEMS Microbiol Lett 2009; 290: 149–155.

    CAS  PubMed  Google Scholar 

  165. Song X, Gao H, Lin Y, Yao Y, Zhu S, Wang J et al. Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis. Immunity 2014; 40: 140–152.

    CAS  PubMed  Google Scholar 

  166. Roth SA, Simanski M, Rademacher F, Schroder L, Harder J . The pattern recognition receptor NOD2 mediates Staphylococcus aureus-induced IL-17C expression in keratinocytes. J Invest Dermatol 2014; 134: 374–380.

    CAS  PubMed  Google Scholar 

  167. Im E, Jung J, Rhee SH . Toll-like receptor 5 engagement induces interleukin-17C expression in intestinal epithelial cells. J Interferon Cytokine Res 2012; 32: 583–591.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kusagaya H, Fujisawa T, Yamanaka K, Mori K, Hashimoto D, Enomoto N et al. Toll-like receptor-mediated airway IL-17C enhances epithelial host defense in an autocrine/paracrine manner. Am J Respir Cell Mol Biol 2014; 50: 30–39.

    CAS  PubMed  Google Scholar 

  169. Johansen C, Riis JL, Gedebjerg A, Kragballe K, Iversen L . Tumor necrosis factor alpha-mediated induction of interleukin 17C in human keratinocytes is controlled by nuclear factor kappaB. J Biol Chem 2011; 286: 25487–25494.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Friedrich M, Diegelmann J, Schauber J, Auernhammer CJ, Brand S . Intestinal neuroendocrine cells and goblet cells are mediators of IL-17A-amplified epithelial IL-17C production in human inflammatory bowel disease. Mucosal Immunol 2015; 8: 943–958.

    CAS  PubMed  Google Scholar 

  171. Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008; 14: 282–289.

    CAS  PubMed  Google Scholar 

  172. Reynolds JM, Martinez GJ, Nallaparaju KC, Chang SH, Wang YH, Dong C . Cutting edge: regulation of intestinal inflammation and barrier function by IL-17C. J Immunol 2012; 189: 4226–4230.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81430036, 81230075, 91429307, 31329002, 91329301 and 91542119), the 973 Program (2013CB944904), and the Science and Technology Commission of Shanghai Municipality (13JC1408900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youcun Qian.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., He, X., Li, X. et al. The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. Cell Mol Immunol 13, 418–431 (2016). https://doi.org/10.1038/cmi.2015.105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.105

Keywords

This article is cited by

Search

Quick links