Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

A naturally occurring CD8+CD122+ T-cell subset as a memory-like Treg family

Abstract

Despite extensive studies on CD4+CD25+ regulatory T cells (Tregs) during the past decade, the progress on their clinical translation remains stagnant. Mounting evidence suggests that naturally occurring CD8+CD122+ T cells are also Tregs with the capacity to inhibit T-cell responses and suppress autoimmunity as well as alloimmunity. In fact, they are memory-like Tregs that resemble a central memory T cell (TCM) phenotype. The mechanisms underlying their suppression are still not well understood, although they may include IL-10 production. We have recently demonstrated that programmed death-1 (PD-1) expression distinguishes between regulatory and memory CD8+CD122+ T cells and that CD8+CD122+ Tregs undergo faster homeostatic proliferation and are more potent in the suppression of allograft rejection than conventional CD4+CD25+ Tregs. These findings may open a new line of investigation for accelerating effective Treg therapies in the clinic. In this review, we summarize the significant progress in this promising field of CD8+CD122+ Treg research and discuss their phenotypes, suppressive roles in autoimmunity and alloimmunity, functional requirements, mechanisms of action and potential applications in the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Gershon RK, Kondo K . Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 1970; 18: 723–737.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cantor H, Shen FW, Boyse EA . Separation of helper T cells from suppressor T cells expressing different Ly components. II. Activation by antigen: after immunization, antigen-specific suppressor and helper activities are mediated by distinct T-cell subclasses. J Exp Med 1976; 143: 1391–1340.

    Article  CAS  PubMed  Google Scholar 

  3. Lu L, Cantor H . Generation and regulation of CD8+ regulatory T cells. Cell Mol Immunol 2008; 5: 401–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu Z, Tugulea S, Cortesini R, Suciu-Foca N . Specific suppression of T helper alloreactivity by allo-MHC class I-restricted CD8+CD28− T cells. Int Immunol 1998; 10: 775–783.

    Article  CAS  PubMed  Google Scholar 

  5. Colovai AI, Liu Z, Ciubotariu R, Lederman S, Cortesini R, Suciu-Foca N . Induction of xenoreactive CD4+ T-cell anergy by suppressor CD8+CD28− T cells. Transplantation 2000; 69: 1304–1310.

    Article  CAS  PubMed  Google Scholar 

  6. Varthaman A, Khallou-Laschet J, Clement M, Fornasa G, Kim HJ, Gaston AT et al. Control of T cell reactivation by regulatory Qa-1-restricted CD8+ T cells. J Immunol 2010; 184: 6585–6591.

    Article  CAS  PubMed  Google Scholar 

  7. Koch SD, Uss E, van Lier RA, ten Berge IJ . Alloantigen-induced regulatory CD8+CD103+ T cells. Hum Immunol 2008; 69: 737–744.

    Article  CAS  PubMed  Google Scholar 

  8. Lu L, Yu Y, Li G, Pu L, Zhang F, Zheng S et al. CD8+CD103+ regulatory T cells in spontaneous tolerance of liver allografts. Int Immunopharmacol 2009; 9: 546–548.

    Article  CAS  PubMed  Google Scholar 

  9. Rifa'i M, Kawamoto Y, Nakashima I, Suzuki H . Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis. J Exp Med 2004; 200: 1123–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Endharti AT, Rifa IM, Shi Z, Fukuoka Y, Nakahara Y, Kawamoto Y et al. Cutting edge: CD8+CD122+ regulatory T cells produce IL-10 to suppress IFN-gamma production and proliferation of CD8+ T cells. J Immunol 2005; 175: 7093–7097.

    Article  CAS  PubMed  Google Scholar 

  11. Chen X, Priatel JJ, Chow MT, Teh HS . Preferential development of CD4 and CD8 T regulatory cells in RasGRP1-deficient mice. J Immunol 2008; 180: 5973–5982.

    Article  CAS  PubMed  Google Scholar 

  12. Shi Z, Rifa'i M, Lee YH, Shiku H, Isobe K, Suzuki H . Importance of CD80/CD86−CD28 interactions in the recognition of target cells by CD8+CD122+ regulatory T cells. Immunology 2008; 124: 121–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Molloy MJ, Zhang W, Usherwood EJ . Suppressive CD8+ T cells arise in the absence of CD4 help and compromise control of persistent virus. J Immunol 2011; 186: 6218–6226.

    Article  CAS  PubMed  Google Scholar 

  14. Endharti AT, Okuno Y, Shi Z, Misawa N, Toyokuni S, Ito M et al. CD8+CD122+ regulatory T cells (Tregs) and CD4+ Tregs cooperatively prevent and cure CD4+ cell-induced colitis. J Immunol 2011; 186: 41–52.

    Article  CAS  PubMed  Google Scholar 

  15. Wang LX, Li Y, Yang G, Pang PY, Haley D, Walker EB et al. CD122+CD8+ Treg suppress vaccine-induced antitumor immune responses in lymphodepleted mice. Eur J Immunol 2010; 40: 1375–1385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim HJ, Wang X, Radfar S, Sproule TJ, Roopenian DC, Cantor H . CD8+ T regulatory cells express the Ly49 Class I MHC receptor and are defective in autoimmune prone B6-Yaa mice. Proc Natl Acad Sci USA 2011; 108: 2010–2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mangalam AK, Luckey D, Giri S, Smart M, Pease LR, Rodriguez M et al. Two discreet subsets of CD8 T cells modulate PLP(91–110) induced experimental autoimmune encephalomyelitis in HLA-DR3 transgenic mice. J Autoimmun 2012; 38: 344–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dai H, Wan N, Zhang S, Moore Y, Wan F, Dai Z . Cutting edge: programmed death-1 defines CD8+CD122+ T cells as regulatory versus memory T cells. J Immunol 2010; 185: 803–807.

    Article  CAS  PubMed  Google Scholar 

  19. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M . Immunological self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25)-breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155: 1151–1164.

    CAS  PubMed  Google Scholar 

  20. Dai Z, Zhang S, Xie Q, Wu S, Su J, Li S et al. Natural CD8+CD122+ T cells are more potent in suppression of allograft rejection than CD4+CD25+ regulatory T cells. Am J Transplant 2014; 14: 39–48.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang X, Sun S, Hwang I, Tough DF, Sprent J . Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 1998; 8: 591–599.

    Article  CAS  PubMed  Google Scholar 

  22. Ku CC, Murakami M, Sakamoto A, Kappler J, Marrack P . Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 2000; 288: 675–678.

    Article  CAS  PubMed  Google Scholar 

  23. Judge AD, Zhang X, Fujii H, Surh CD, Sprent J . Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8+ T cells. J Exp Med 2002; 196: 935–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sakaguchi S . Regulatory T cells: key controllers of immunologic self-tolerance. Cell 2000; 101: 455–458.

    Article  CAS  PubMed  Google Scholar 

  25. Sakaguchi S . Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005; 6: 345–352.

    Article  CAS  PubMed  Google Scholar 

  26. Hori S, Nomura T, Sakaguchi S . Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057–1061.

    Article  CAS  PubMed  Google Scholar 

  27. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S . Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002; 3: 135–142.

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki H, Shi Z, Okuno Y, Isobe K . Are CD8+CD122+ cells regulatory T cells or memory T cells? Hum Immunol 2008; 69: 751–754.

    Article  CAS  PubMed  Google Scholar 

  29. Lerret NM, Houlihan JL, Kheradmand T, Pothoven KL, Zhang ZJ, Luo X . Donor-specific CD8+ Foxp3+ T cells protect skin allografts and facilitate induction of conventional CD4+ Foxp3+ regulatory T cells. Am J Transplant 2012; 12: 2335–2347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shi Z, Okuno Y, Rifa'i M, Endharti AT, Akane K, Isobe K et al. Human CD8+CXCR3+ T cells have the same function as murine CD8+CD122+ Treg. Eur J Immunol 2009; 39: 2106–2119.

    Article  CAS  PubMed  Google Scholar 

  31. Slutter B, Pewe LL, Kaech SM, Harty JT . Lung airway-surveilling CXCR3hi memory CD8+ T cells are critical for protection against influenza A virus. Immunity 2013; 39: 939–948.

    Article  CAS  PubMed  Google Scholar 

  32. Velu V, Titanji K, Zhu B, Husain S, Pladevega A, Lai L et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 2009; 458: 206–210.

    Article  CAS  PubMed  Google Scholar 

  33. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 2009; 10: 29–37.

    Article  CAS  PubMed  Google Scholar 

  34. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006; 439: 682–687.

    Article  CAS  PubMed  Google Scholar 

  35. Petrovas C, Casazza JP, Brenchley JM, Price DA, Gostick E, Adams WC et al. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J Exp Med 2006; 203: 2281–2292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin SJ, Peacock CD, Bahl K, Welsh RM . Programmed death-1 (PD-1) defines a transient and dysfunctional oligoclonal T cell population in acute homeostatic proliferation. J Exp Med 2007; 204: 2321–2333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wan N, Dai H, Wang T, Moore Y, Zheng XX, Dai Z . Bystander central memory but not effector memory CD8+ T cells suppress allograft rejection. J Immunol 2008; 180: 113–121.

    Article  CAS  PubMed  Google Scholar 

  38. Okuno Y, Murakoshi A, Negita M, Akane K, Kojima S, Suzuki H . CD8+ CD122+ regulatory T cells contain clonally expanded cells with identical CDR3 sequences of the T-cell receptor beta-chain. Immunology 2013; 139: 309–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee YH, Ishida Y, Rifa'i M, Shi Z, Isobe K, Suzuki H . Essential role of CD8+CD122+ regulatory T cells in the recovery from experimental autoimmune encephalomyelitis. J Immunol 2008; 180: 825–832.

    Article  CAS  PubMed  Google Scholar 

  40. Zozulya AL, Ortler S, Fabry Z, Sandor M, Wiendl H . The level of B7 homologue 1 expression on brain DC is decisive for CD8 Treg cell recruitment into the CNS during EAE. Eur J Immunol 2009; 39: 1536–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bahri R, Bollinger A, Bollinger T, Orinska Z, Bulfone-Paus S . Ectonucleotidase CD38 demarcates regulatory, memory-like CD8+ T cells with IFN-gamma-mediated suppressor activities. PLoS ONE 2012; 7: e45234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saitoh O, Abiru N, Nakahara M, Nagayama Y . CD8+CD122+ T cells, a newly identified regulatory T subset, negatively regulate Graves' hyperthyroidism in a murine model. Endocrinology 2007; 148: 6040–6046.

    Article  CAS  PubMed  Google Scholar 

  43. Yu P, Steel JC, Zhang M, Morris JC, Waitz R, Fasso M et al. Simultaneous inhibition of two regulatory T-cell subsets enhanced interleukin-15 efficacy in a prostate tumor model. Proc Natl Acad Sci USA 2012; 109: 6187–6192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rifa'i M, Shi Z, Zhang SY, Lee YH, Shiku H, Isobe K et al. CD8+CD122+ regulatory T cells recognize activated T cells via conventional MHC class I-alphabetaTCR interaction and become IL-10-producing active regulatory cells. Int Immunol 2008; 20: 937–947.

    Article  CAS  PubMed  Google Scholar 

  45. Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 2000; 12: 431–440.

    Article  CAS  PubMed  Google Scholar 

  46. Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY . A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 2005; 6: 1142–1151.

    Article  CAS  PubMed  Google Scholar 

  47. Shameli A, Yamanouchi J, Tsai S, Yang Y, Clemente-Casares X, Moore A et al. IL-2 promotes the function of memory-like autoregulatory CD8+ T cells but suppresses their development via FoxP3+ Treg cells. Eur J Immunol 2013; 43: 394–403.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare that there is no conflict of interest in this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Xie, Q., Zeng, Y. et al. A naturally occurring CD8+CD122+ T-cell subset as a memory-like Treg family. Cell Mol Immunol 11, 326–331 (2014). https://doi.org/10.1038/cmi.2014.25

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.25

Keywords

This article is cited by

Search

Quick links