Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Decidual stromal cells recruit Th17 cells into decidua to promote proliferation and invasion of human trophoblast cells by secreting IL-17

Abstract

T helper 17 (Th17) cells have both regulatory and protective roles in physiological conditions. The Th17 subset and the cytokine interleukin-17A (IL-17A) have been implicated in the pathogenesis of certain autoimmune diseases, several types of cancer and allograft rejection. However, the role of Th17 cells at the maternal/fetal interface remains unknown. Here, we demonstrate that Th17 cells are present in decidua and are increased in the peripheral blood of 10 clinically normal pregnancies based on intracellular cytokine analysis. Our results suggest a potential role of Th17 cells in sustaining pregnancy in humans. Furthermore, we demonstrate that decidual stromal cells (DSCs) but not trophoblast cells recruit peripheral Th17 cells into the decidua by secreting CCL2. The recruited Th17 cells promote proliferation and invasion and inhibit the apoptosis of human trophoblast cells by secreting IL-17 during the first trimester of pregnancy. These findings indicate a novel role for Th17 cells in controlling the maternal–fetal relationship and placenta development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bulmer JN, Morrison L, Longfellow M, Ritson A, Pace D . Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum Reprod 1991; 6: 791–798.

    Article  CAS  PubMed  Google Scholar 

  2. Strominger JL . Human decidual lymphocytes and the immunobiology of pregnancy. J Reprod Immunol 2004; 62: 17–18.

    Article  PubMed  Google Scholar 

  3. Piao HLL, Tao Y, Zhu R, Wang SC, Tang CL, Fu Q et al. The CXCL12/CXCR4 axis is involved in the maintenance of Th2 bias at the maternal/fetal interface in early human pregnancy. Cell Mol Immunol 2012; 9: 423–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Michimata T, Tsuda H, Sakai M, Fujimura M, Nagata K, Nakamura M, et al. Accumulation of CRTH2-positive T-helper 2 and T-cytotoxic 2 cells at implantation sites of human decidua in a prostaglandin D2-mediated manner. Mol. Hum Reprod 2002; 8: 181–187.

    Article  CAS  PubMed  Google Scholar 

  5. Zhu XY, Zhou YH, Wang MY, Jin LP, Yuan MM, Li DJ . Blockade of CD86 signaling facilitates a Th2 bias at the maternal–fetal interface and expands peripheral CD4+CD25+ regulatory T cells to rescue abortion-prone fetus. Biol Reprod 2005; 72: 338–345.

    Article  CAS  PubMed  Google Scholar 

  6. Somerset DA, Zheng Y, Kilby MD, Sansom DM, Drayson MT . Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology 2004; 112: 38–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO et al. Transforming growth factor-β induces development of the Th17 lineage. Nature 2006; 441: 231–234.

    Article  CAS  PubMed  Google Scholar 

  8. Huang GH, Wang YY, Chi HB . Regulation of TH17 cell differentiation by innate immune signals. Cell Mol Immunol 2012; 9: 287–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carvalho A, Giovannini G, de Luca A, D'Angelo C, Casagrande A, Iannitti RG et al. Dectin-1 isoforms contribute to distinct Th1/Th17 cell activation in mucosal candidiasis Cell Mol Immunol 2012; 9: 276–286.

    Article  CAS  Google Scholar 

  10. Yao R, Ma YL, Du YY, Liao M, Li H, Liang W et al. The altered expression of inflammation-related microRNAs with microRNA-155 expression correlates with Th17 differentiation in patients with acute coronary syndrome Cell Mol Immunol 2011; 8: 486–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lock C, Hermans G, Pedotti R, Brendolan A, Schad E, Garren H et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 2002; 8: 500–508.

    Article  CAS  PubMed  Google Scholar 

  12. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007; 8: 950–957.

    Article  CAS  PubMed  Google Scholar 

  13. Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003; 52: 65–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Karow M, Flavell RA . Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 2007; 27: 647–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. OConnor W Jr, Kamanaka M, Booth CJ, Town T, Nakae S, Iwakura Y et al. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol 2009; 10: 603–609.

    Article  CAS  Google Scholar 

  16. Huang H, Kim HJ, Chang EJ, Lee ZH, Hwang SJ, Kim HM et al. IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: implications for bone remodeling. Cell Death Differ 2009; 16: 1332–1343.

    Article  CAS  PubMed  Google Scholar 

  17. Pongcharoen S, Niumsup P, Sanguansermsri D, Supalap K, Butkhamchot P . The effect of interleukin-17 on the proliferation and invasion of JEG-3 human choriocarcinoma cells. Am J Reprod Immunol 2006; 55: 291–300.

    Article  CAS  PubMed  Google Scholar 

  18. Amadi-Obi A, Yu CR, Liu XB, Mahdi RM, Clarke GL, Nussenblatt RB et al. Egwuagu. Th17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat Med 2007; 13: 711–718.

    Article  CAS  PubMed  Google Scholar 

  19. Nakashima A, Ito M, Yoneda S, Shiozaki A, Hidaka T, Saito S . Circulating and decidual Th17 cell levels in healthy pregnancy. Am J Reprod Immunol 2010; 63: 104–109.

    Article  CAS  PubMed  Google Scholar 

  20. Wu X, Li DJ, Yuan MM, Zhu Y, Wang MY . The expression of CXCR4/CXCL12 in first-trimester human trophoblast cells. Biol Reprod 2004; 70: 1877–1885.

    Article  CAS  PubMed  Google Scholar 

  21. Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 1998; 8: 177–187.

    Article  CAS  PubMed  Google Scholar 

  22. Yang H, Qiu L, Chen G, Ye Z, Lv C, Lin Q . Proportional change of CD4+CD25+ regulatory T cells in decidua and peripheral blood in unexplained recurrent spontaneous abortion patients. Fertil Steril 2008; 89: 656–661.

    Article  CAS  PubMed  Google Scholar 

  23. Tilburgs T, Roelen DL, van der Mast BJ, van Schip JJ, Kleijburg C, de Groot-Swings GM et al. Differential distribution of CD4+CD25bright and CD8+CD28− T-cells in decidua and maternal blood during human pregnancy. Placenta 2006; 27: S47–S53.

    Article  PubMed  CAS  Google Scholar 

  24. Toldi G, Molvarec A, Stenczer B, Müller V, Eszes N, Bohács A et al. Peripheral Th1/Th2/Th17/regulatory T-cell balance in asthmatic pregnancy. Int Immunol 2011; 23: 669–677.

    Article  CAS  PubMed  Google Scholar 

  25. Sigmundsdottir H, Butcher EC . Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking. Nat Immunol 2008; 9: 981–987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu X, Jin LP, Yuan MM, Zhu Y, Wang MY, Li DJ . Human first-trimester trophoblast cells recruit CD56brightCD16− NK cells into decidua by way of expressing and secreting of CXCL12/stromal cell-derived factor 1. J Immunol 2005; 1: 61–68.

    Article  Google Scholar 

  27. Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 2007; 8: 639–646.

    Article  CAS  PubMed  Google Scholar 

  28. Sato W, Aranami T, Yamamura T . Cutting edge: human Th17 cells are identified as bearing CCR2+CCR5− phenotype. J Immunol 2007; 178: 7525–7529.

    Article  CAS  PubMed  Google Scholar 

  29. Hirota K, Yoshitomi H, Hashimoto M, Maeda S, Teradaira S, Sugimoto N et al. Preferential recruitment of CCR6- expressing Th17 cells to inflamed joints via CCL-20 in rheumatoid arthritis and its animal model., J Exp Med 2007; 204: 2803–2812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reboldi A, Coisne C, Baumjohannl D, Benvenuto F, Bottinelli1 D, Lira S et al. C–C chemokine receptor 6-regulated entry of Th17 cells into the CNS through the chorioid plexus is required for the initiation of EAE. Nat Immunol 2009; 10: 514–523.

    Article  CAS  PubMed  Google Scholar 

  31. Ishii M, Hayakawa S, Suzuki MK, Yoshino N, Honda M, Nishinarita S et al. Expression of functional chemokine receptors of human placental cells. Am J Reprod Immunol 2000; 44: 365–373.

    Article  CAS  PubMed  Google Scholar 

  32. Lanier LL, Chang C, Philips JH . Human NKR-P1A. A disulphide- linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J Immunol 1994; 153: 2417–2428.

    CAS  PubMed  Google Scholar 

  33. Rosen DB, Bettadapura J, Alsharifi M, Mathew PA, Warren HS, Lanier LL . Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J Immunol 2005; 175: 7796–7799.

    Article  CAS  PubMed  Google Scholar 

  34. van Beelen AJ, Teunissen MB, Kapsenberg ML, de Jong CE . Interleukin-17 in inflammatory skin disorders. Curr Opin Allergy Clin Immunol 2007; 7: 374–381.

    Article  CAS  PubMed  Google Scholar 

  35. Spreu J, Kienle EC, Schrage B, Steinle A . CLEC2A: a novel, alternatively spliced and skin-associated member of the NKC encoded AICL-CD69-LLT1 family. Immunogenetics 2007; 59: 903–912.

    Article  CAS  PubMed  Google Scholar 

  36. Kleinschek MA, Boniface K, Sadekova S, Grein J, Murphy EE, Turner SP et al. Circulating and gut-resident human Th17 cell express CD161 and promote intestinal inflammation. J Exp Med 2009; 206: 525–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aplin JD . Adhesion molecules in implantation. Rev Reprod 1997; 2: 84–93.

    Article  CAS  PubMed  Google Scholar 

  38. Bowen JM, Chamley L, Mitchell MD, Keelan JA . Cytokines of the placenta and extra-placental membranes: biosynthesis, secretion and roles in establishment of pregnancy in women. Placenta 2002; 23: 239–256.

    Article  CAS  PubMed  Google Scholar 

  39. Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng DF, Yu H . IL-17 can promote tumor growth through an IL-6–Stat3 signaling pathway. J Exp Med 2009; 206: 1457–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Smith SC, Baker PN, Symonds EM . Placental apoptosis in normal human pregnancy. Am J Obstet Gynecol 1997; 177: 57–65.

    Article  CAS  PubMed  Google Scholar 

  41. Smith SC, Leung TN, To KF, Baker PN . Apoptosis is a rare event in first-trimester placental tissue. Am J Obstet Gynecol 2000; 183: 697–699.

    Article  CAS  PubMed  Google Scholar 

  42. Liu YS, Wu L, Tong XH, Wu LM, He GP, Zhou GX et al. Study on the relationship between Th17 cells and unexplained recurrent spontaneous abortion. Am J Reprod Immunol 2011; 65: 503–511.

    Article  CAS  PubMed  Google Scholar 

  43. Nakashima A, Ito M, Shima T, Bac ND, Hidaka T, Saito S . Accumulation of IL-17-positive cells in decidua of inevitable abortion cases. Am J Reprod Immunol 2010; 64: 4–11.

    PubMed  Google Scholar 

  44. Toldi G, Rigó J Jr, Stenczer B, Vásárhelyi B, Molvarec A . Increased prevalence of IL-17-producing peripheral blood lymphocytes in pre-eclampsia. Am J Reprod Immunol 2011; 66: 223–229.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Basic Research Program of China (2006CB944007), Major International Joint Research Project of NSFC 30910103909, National Natural Science Foundation of China 31270969, National and Shanghai Leading Academic Discipline Project (211XK22), Program for Outstanding Medical Academic Leader (all to DJL) and Research Fund for Doctoral Program from Education Ministry of China 200802461019 (to LPJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Jin Li.

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology’s website. (http://www.nature.com/cmi).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, HX., Jin, LP., Xu, B. et al. Decidual stromal cells recruit Th17 cells into decidua to promote proliferation and invasion of human trophoblast cells by secreting IL-17. Cell Mol Immunol 11, 253–262 (2014). https://doi.org/10.1038/cmi.2013.67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2013.67

Keywords

This article is cited by

Search

Quick links