Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

MicroRNAs in the regulation of TLR and RIG-I pathways

Abstract

The innate immune system recognizes invading pathogens through germline-encoded pattern recognition receptors (PRRs), which elicit innate antimicrobial and inflammatory responses and initiate adaptive immunity to control or eliminate infection. Toll-like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I) are the key innate immune PRRs and are tightly regulated by elaborate mechanisms to ensure a beneficial outcome in response to foreign invaders. Although much of the focus in the literature has been on the study of protein regulators of inflammation, microRNAs (miRNAs) have emerged as important controllers of certain features of the inflammatory process. Several miRNAs are induced by TLR and RIG-I activation in myeloid cells and act as feedback regulators of TLR and RIG-I signaling. In this review, we comprehensively discuss the recent understanding of how miRNA networks respond to TLR and RIG-I signaling and their role in the initiation and termination of inflammatory responses. Increasing evidence also indicates that both virus-encoded miRNAs and cellular miRNAs have important functions in viral replication and host anti-viral immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Iwasaki A, Medzhitov R . Regulation of adaptive immunity by the innate immune system. Science 2010; 327: 291–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Palm NW, Medzhitov R . Pattern recognition receptors and control of adaptive immunity. Immunol Rev 2009; 227: 221–233.

    Article  CAS  PubMed  Google Scholar 

  3. Kawai T, Akira S . Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011; 34: 637–650.

    CAS  PubMed  Google Scholar 

  4. O'Neill LA, Bowie AG . The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 2007; 7: 353–364.

    Article  CAS  PubMed  Google Scholar 

  5. Takeda K, Akira S . TLR signaling pathways. Semin Immunol 2004; 16: 3–9.

    Article  CAS  PubMed  Google Scholar 

  6. O'Neill LA . When signaling pathways collide: positive and negative regulation of Toll-like receptor signal transduction. Immunity 2008; 29: 12–20.

    Article  CAS  PubMed  Google Scholar 

  7. Kondo T, Kawai T, Akira S . Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol 2012; 33: 449–458.

    Article  CAS  PubMed  Google Scholar 

  8. An H, Hou J, Zhou J, Zhao W, Xu H, Zheng Y et al. Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat Immunol 2008; 9: 542–550.

    Article  CAS  PubMed  Google Scholar 

  9. An H, Zhao W, Hou J, Zhang Y, Xie Y, Zheng Y et al. SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production. Immunity 2006; 25: 919–928.

    Article  CAS  PubMed  Google Scholar 

  10. An H, Xu H, Zhang M, Zhou J, Feng T, Qian C et al. Src homology 2 domain-containing inositol-5-phosphatase 1 (SHIP1) negatively regulates TLR4-mediated LPS response primarily through a phosphatase activity- and PI-3K-independent mechanism. Blood 2005; 105: 4685–4692.

    Article  CAS  PubMed  Google Scholar 

  11. Xu H, An H, Hou J, Han C, Wang P, Yu Y et al. Phosphatase PTP1B negatively regulates MyD88- and TRIF-dependent proinflammatory cytokine and type I interferon production in TLR-triggered macrophages. Mol Immunol 2008; 45: 3545–3552.

    Article  CAS  PubMed  Google Scholar 

  12. Liu X, Yao M, Li N, Wang C, Zheng Y, Cao X . CaMKII promotes TLR-triggered proinflammatory cytokine and type I interferon production by directly binding and activating TAK1 and IRF3 in macrophages. Blood 2008; 112: 4961–4970.

    Article  CAS  PubMed  Google Scholar 

  13. Jefferies CA, Doyle S, Brunner C, Dunne A, Brint E, Wietek C et al. Bruton's tyrosine kinase is a Toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor kappaB activation by Toll-like receptor 4. J Biol Chem 2003; 278: 26258–26264.

    Article  CAS  PubMed  Google Scholar 

  14. Huang Q, Yang J, Lin Y, Walker C, Cheng J, Liu Z et al. Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nat Immunol 2004; 5: 98–103.

    Article  CAS  PubMed  Google Scholar 

  15. Wang C, Chen T, Zhang J, Yang M, Li N, Xu X et al. The E3 ubiquitin ligase Nrdp1 ‘preferentially’ promotes TLR-mediated production of type I interferon. Nat Immunol 2009; 10: 744–752.

    Article  CAS  PubMed  Google Scholar 

  16. Yang M, Wang C, Zhu X, Tang S, Shi L, Cao X et al. E3 ubiquitin ligase CHIP facilitates Toll-like receptor signaling by recruiting and polyubiquitinating Src and atypical PKCζ. J Exp Med 2011; 208: 2099–2112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004; 5: 1052–1060.

    Article  CAS  PubMed  Google Scholar 

  18. Cui J, Zhu L, Xia X, Wang HY, Legras X, Hong J et al. NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell 2010; 141: 483–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xia X, Cui J, Wang HY, Zhu L, Matsueda S, Wang Q et al. NLRX1 negatively regulates TLR-induced NF-kappaB signaling by targeting TRAF6 and IKK. Immunity 2011; 34: 843–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han C, Jin J, Xu S, Liu H, Li N, Cao X . Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat Immunol 2010; 11: 734–742.

    Article  CAS  PubMed  Google Scholar 

  21. Rui Y, Liu X, Li N, Jiang Y, Chen G, Cao X et al. PECAM-1 ligation negatively regulates TLR4 signaling in macrophages. J Immunol 2007; 179: 7344–7351.

    Article  CAS  PubMed  Google Scholar 

  22. Yao M, Liu X, Li D, Chen T, Cai Z, Cao X . Late endosome/lysosome-localized Rab7b suppresses TLR9-initiated proinflammatory cytokine and type I IFN production in macrophages. J Immunol 2009; 183: 1751–1758.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Chen T, Han C, He D, Liu H, An H et al. Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood 2007; 110: 962–971.

    Article  CAS  PubMed  Google Scholar 

  24. Wu Y, Zhu X, Li N, Chen T, Yang M, Yao M et al. CMRF-35-like molecule 3 preferentially promotes TLR9-triggered proinflammatory cytokine production in macrophages by enhancing TNF receptor-associated factor 6 ubiquitination. J Immunol 2011; 187: 4881–4889.

    Article  CAS  PubMed  Google Scholar 

  25. Yang P, An H, Liu X, Wen M, Zheng Y, Rui Y et al. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol 2010; 11: 487–494.

    Article  CAS  PubMed  Google Scholar 

  26. Liu X, Zhan Z, Li D, Xu L, Ma F, Zhang P et al. Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase Btk. Nat Immunol 2011; 12: 416–424.

    Article  CAS  PubMed  Google Scholar 

  27. Xu S, Liu X, Bao Y, Zhu X, Han C, Zhang P et al. Constitutive MHC class I molecules negatively regulate TLR-triggered inflammatory responses via the Fps–SHP-2 pathway. Nat Immunol 2012; 13: 551–559.

    Article  CAS  PubMed  Google Scholar 

  28. Chen T, Guo J, Han C, Yang M, Cao X . Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. J Immunol 2009; 182: 1449–1459.

    Article  CAS  PubMed  Google Scholar 

  29. Fang H, Wu Y, Huang X, Wang W, Ang B, Cao X et al. Toll-like receptor 4 (TLR4) is essential for Hsp70-like protein 1 (HSP70L1) to activate dendritic cells and induce Th1 response. J Biol Chem 2011; 286: 30393–30400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang Y, Chen G, Zhang Y, Lu L, Liu S, Cao X . Nerve growth factor promotes TLR4 signaling-induced maturation of human dendritic cells in vitro through inducible p75NTR 1. J Immunol 2007; 179: 6297–62304.

    Article  CAS  PubMed  Google Scholar 

  31. Arimoto K, Takahashi H, Hishiki T, Konishi H, Fujita T, Shimotohno K . Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci USA 2007; 104: 7500–7505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim MJ, Hwang SY, Imaizumi T, Yoo JY . Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. J Virol 2008; 82: 1474–1483.

    Article  CAS  PubMed  Google Scholar 

  33. Lin R, Yang L, Nakhaei P, Sun Q, Sharif-Askari E, Julkunen I et al. Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J Biol Chem 2006; 281: 2095–2103.

    Article  CAS  PubMed  Google Scholar 

  34. Inn KS, Gack MU, Tokunaga F, Shi M, Wong LY, Iwai K et al. Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction. Mol Cell 2011; 41: 354–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    Article  CAS  PubMed  Google Scholar 

  36. Bartel DP, Chen CZ . Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 2004; 5: 396–400.

    Article  CAS  PubMed  Google Scholar 

  37. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425: 415–419.

    CAS  PubMed  Google Scholar 

  38. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23: 4051–4060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD . A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001; 293: 834–838.

    Article  CAS  PubMed  Google Scholar 

  40. Guo H, Ingolia NT, Weissman JS, Bartel DP . Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010; 466: 835–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Filipowicz W, Bhattacharyya SN, Sonenberg N . Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9: 102–114.

    Article  CAS  PubMed  Google Scholar 

  43. Hutvagner G, Zamore PD . A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002; 297: 2056–2060.

    Article  CAS  PubMed  Google Scholar 

  44. Kozomara A, Griffiths-Jones S . miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011; 39: 152–157.

    Article  CAS  Google Scholar 

  45. Friedman RC, Farh KK, Burge CB, Bartel DP . Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19: 92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Takahashi H, Kanno T, Nakayamada S, Hirahara K, Sciumè G, Muljo SA et al. TGF-beta and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat Immunol 2012; 13: 587–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baltimore D, Boldin MP, O'Connell RM, Rao DS, Taganov KD . MicroRNAs: new regulators of immune cell development and function. Nat Immunol 2008; 9: 839–845.

    Article  CAS  PubMed  Google Scholar 

  48. Xiao C, Rajewsky K . MicroRNA control in the immune system: basic principles. Cell 2009; 136: 26–36.

    Article  CAS  PubMed  Google Scholar 

  49. O'Neill LA, Sheedy FJ, McCoy CE . MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 2011; 11: 163–175.

    Article  CAS  PubMed  Google Scholar 

  50. Li T, Morgan MJ, Choksi S, Zhang Y, Kim YS, Liu ZG . MicroRNAs modulate the noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation. Nat Immunol 2010; 11: 799–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rossi RL, Rossetti G, Wenandy L, Curti S, Ripamonti A, Bonnal RJ et al. Distinct microRNA signatures in human lymphocyte subsets and enforcement of the naive state in CD4+ T cells by the microRNA miR-125b. Nat Immunol 2011; 12: 796–803.

    Article  CAS  PubMed  Google Scholar 

  52. Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O'Leary JJ, Ruan Q et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 2010; 11: 141–147.

    Article  CAS  PubMed  Google Scholar 

  53. Taganov KD, Boldin MP, Chang KJ, Baltimore D . NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006; 103: 12481–12486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nahid MA, Satoh M, Chan EK . MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol 2011; 8: 388–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S et al. miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol 2010; 184: 4955–4965.

    Article  CAS  PubMed  Google Scholar 

  56. Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med 2011; 208: 1189–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D . MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 2007; 104: 1604–1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nahid MA, Rivera M, Lucas A, Chan EK, Kesavalu L . Polymicrobial infection with periodontal pathogens specifically enhances microRNA miR-146a in ApoE−/− mice during experimental periodontal disease. Infect Immun 2011; 79: 1597–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lagos D, Pollara G, Henderson S, Gratrix F, Fabani M, Milne RS et al. miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator. Nat Cell Biol 2010; 12: 513–519.

    Article  CAS  PubMed  Google Scholar 

  60. Moschos SA, Williams AE, Perry MM, Birrell MA, Belvisi MG, Lindsay MA . Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics 2007; 8: 240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Liu G, Friggeri A, Yang Y, Park YJ, Tsuruta Y, Abraham E . miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci USA 2009; 106: 15819–15824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bazzoni F, Rossato M, Fabbri M, Gaudiosi D, Mirolo M, Mori L et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci USA 2009; 106: 5282–5287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jennewein C, von Knethen A, Schmid T, Brune B . MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA destabilization. J Biol Chem 2010; 285: 11846–11853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhou R, Hu G, Gong AY, Chen XM . Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS-induced transactivation of miRNA genes in human biliary epithelial cells. Nucleic Acids Res 2010; 38: 3222–3232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou R, Hu G, Liu J, Gong AY, Drescher KM, Chen XM . NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses. PLoS Pathog 2009; 5: 1000681.

    Article  CAS  Google Scholar 

  66. Hu G, Zhou R, Liu J, Gong AY, Eischeid AN, Dittman JW et al. MicroRNA-98 and let-7 confer cholangiocyte expression of cytokine-inducible Src homology 2-containing protein in response to microbial challenge. J Immunol 2009; 183: 1617–1624.

    Article  CAS  PubMed  Google Scholar 

  67. Tili E, Michaille J, Cimino A, Costinean S, Dumitru C, Adair B et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 2007; 179: 5082–5089.

    Article  CAS  PubMed  Google Scholar 

  68. Androulidaki A, Iliopoulos D, Arranz A, Doxaki C, Schworer S, Zacharioudaki V et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 2009; 31: 220–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Grassmann R, Jeang KT . The roles of microRNAs in mammalian virus infection. Biochim Biophys Acta 2008; 1779: 706–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hou J, Wang P, Lin L, Liu X, Ma F, An H et al. MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 2009; 183: 2150–2158.

    Article  CAS  PubMed  Google Scholar 

  71. Wang P, Hou J, Lin L, Wang C, Liu X, Li D et al. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol 2010; 185: 6226–6233.

    Article  CAS  PubMed  Google Scholar 

  72. Heikham R, Shankar R . Flanking region sequence information to refine microRNA target predictions. J Biosci 2010; 35: 105–118.

    Article  CAS  PubMed  Google Scholar 

  73. Chen XM, Splinter PL, O'Hara SP, LaRusso NF . A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J Biol Chem 2007; 282: 28929–28938.

    Article  CAS  PubMed  Google Scholar 

  74. Yang K, He YS, Wang XQ, Lu L, Chen QJ, Liu J et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting Toll-like receptor 4. FEBS Lett 2011; 585: 854–860.

    Article  CAS  PubMed  Google Scholar 

  75. Benakanakere MR, Li Q, Eskan MA, Singh AV, Zhao J, Galicia JC et al. Modulation of TLR2 protein expression by miR-105 in human oral keratinocytes. J Biol Chem 2009; 284: 23107–23115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Philippe L, Alsaleh G, Suffert G, Meyer A, Georgel P, Sibilia J et al. TLR2 expression is regulated by microRNA miR-19 in rheumatoid fibroblast-like synoviocytes. J Immunol 2012; 188: 454–461.

    Article  CAS  PubMed  Google Scholar 

  77. Tang B, Xiao B, Liu Z, Li N, Zhu ED, Li BS et al. Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation. FEBS Lett 2010; 584: 1481–1486.

    Article  CAS  PubMed  Google Scholar 

  78. Huang RS, Hu GQ, Lin B, Lin ZY, Sun CC . MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. J Investig Med 2010; 58: 961–967.

    Article  CAS  PubMed  Google Scholar 

  79. Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA et al. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci USA 2009; 106: 2735–2740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 2010; 16: 49–58.

    Article  CAS  PubMed  Google Scholar 

  81. Horwood NJ, Mahon T, McDaid JP, Campbell J, Mano H, Brennan FM et al. Bruton's tyrosine kinase is required for lipopolysaccharide-induced tumor necrosis factor alpha production. J Exp Med 2003; 197: 1603–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Alsaleh G, Suffert G, Semaan N, Juncker T, Frenzel L, Gottenberg JE et al. Bruton's tyrosine kinase is involved in miR-346-related regulation of IL-18 release by lipopolysaccharide-activated rheumatoid fibroblast-like synoviocytes. J Immunol 2009; 182: 5088–5097.

    Article  CAS  PubMed  Google Scholar 

  83. Martinez NJ, Walhout AJ . The interplay between transcription factors and microRNAs in genome-scale regulatory networks. Bioessays 2009; 31: 435–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Qi J, Qiao Y, Wang P, Li S, Zhao W, Gao C . microRNA-210 negatively regulates LPS-induced production of proinflammatory cytokines by targeting NF-kappaB1 in murine macrophages. FEBS Lett 2012; 586: 1201–1207.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang M, Liu Q, Mi S, Liang X, Zhang Z, Su X et al. Both miR-17-5p and miR-20a alleviate suppressive potential of myeloid-derived suppressor cells by modulating STAT3 expression. J Immunol 2011; 186: 4716–4724.

    Article  CAS  PubMed  Google Scholar 

  86. Worm J, Stenvang J, Petri A, Frederiksen KS, Obad S, Elmén J et al. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF. Nucleic Acids Res 2009; 37: 5784–5792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang HS, Jansen AP, Komar AA, Zheng X, Merrick WC, Costes S et al. The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol Cell Biol 2003; 23: 26–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. O'Connell RM, Chaudhuri AA, Rao DS, Baltimore D . Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA 2009; 106: 7113–7118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cremer TJ, Ravneberg DH, Clay CD, Piper-Hunter MG, Marsh CB, Elton TS et al. MiR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response. PLoS ONE 2009; 4: 8508.

    Article  CAS  Google Scholar 

  90. Gabhann JN, Higgs R, Brennan K, Thomas W, Damen JE, Ben N et al. Absence of SHIP-1 results in constitutive phosphorylation of tank-binding kinase 1 and enhanced TLR3-dependent IFN-beta production. J Immunol 2010; 184: 2314–2320.

    Article  CAS  PubMed  Google Scholar 

  91. McCoy C, Sheedy F, Qualls J, Doyle S, Quinn S, Murray P et al. IL-10 inhibits miR-155 induction by Toll-like receptors. J Biol Chem 2010; 285: 20492–20498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bai Y, Qian C, Qian L, Ma F, Hou J, Chen Y et al. Integrin CD11b negatively regulates TLR9-triggered dendritic cell cross-priming by upregulating microRNA-146a. J Immunol 2012; 188: 5293–5302.

    Article  CAS  PubMed  Google Scholar 

  93. Liu X, Zhan Z, Xu L, Ma F, Li D, Guo Z et al. MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIalpha. J Immunol 2010; 185: 7244–7251.

    Article  CAS  PubMed  Google Scholar 

  94. Shaked I, Meerson A, Wolf Y, Avni R, Greenberg D, Gilboa-Geffen A et al. MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 2009; 31: 965–973.

    Article  CAS  PubMed  Google Scholar 

  95. Zhao J, Gong AY, Zhou R, Liu J, Eischeid AN, Chen XM . Downregulation of PCAF by miR-181a/b provides feedback regulation to TNF-alpha-induced transcription of proinflammatory genes in liver epithelial cells. J Immunol 2012; 188: 1266–1274.

    Article  CAS  PubMed  Google Scholar 

  96. Xu Z, Xiao SB, Xu P, Xie Q, Cao L, Wang D et al. miR-365, a novel negative regulator of interleukin-6 gene expression, is cooperatively regulated by Sp1 and NF-kappaB. J Biol Chem 2011; 286: 21401–21412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sun Y, Varambally S, Maher CA, Cao Q, Chockley P, Toubai T et al. Targeting of microRNA-142-3p in dendritic cells regulates endotoxin-induced mortality. Blood 2011; 117: 6172–6183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Iliopoulos D, Hirsch HA, Struhl K . An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 2009; 139: 693–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lu TX, Munitz A, Rothenberg ME . MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 2009; 182: 4994–5002.

    Article  CAS  PubMed  Google Scholar 

  100. Lu TX, Hartner J, Lim EJ, Fabry V, Mingler MK, Cole ET et al. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol 2011; 187: 3362–3373.

    Article  CAS  PubMed  Google Scholar 

  101. Wu Z, Lu H, Sheng J, Li L . Inductive microRNA-21 impairs anti-mycobacterial responses by targeting IL-12 and Bcl-2. FEBS Lett 2012; 586: 2459–2467.

    Article  CAS  PubMed  Google Scholar 

  102. Sharma A, Kumar M, Aich J, Hariharan M, Brahmachari SK, Agrawal A et al. Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a. Proc Natl Acad Sci USA 2009; 106: 5761–5766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ma F, Xu S, Liu X, Zhang Q, Xu X, Liu M et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat Immunol 2011; 12: 861–869.

    Article  CAS  PubMed  Google Scholar 

  104. Palanisamy V, Jakymiw A, van Tubergen EA, D'Silva NJ, Kirkwood KL . Control of cytokine mRNA expression by RNA-binding proteins and microRNAs. J Dent Res 2012; 91: 651–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 2005; 120: 623–634.

    Article  CAS  PubMed  Google Scholar 

  106. El Gazzar M, McCall CE . MicroRNAs distinguish translational from transcriptional silencing during endotoxin tolerance. J Biol Chem 2010; 285: 20940–20951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ma F, Liu X, Li D, Wang P, Li N, Lu L et al. MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. J Immunol 2010; 184: 6053–6059.

    Article  CAS  PubMed  Google Scholar 

  108. Takeuchi O, Akira S . MDA5/RIG-I and virus recognition. Curr Opin Immunol 2008; 20: 17–22.

    Article  CAS  PubMed  Google Scholar 

  109. Kato H, Takahasi K, Fujita T . RIG-I-like receptors: cytoplasmic sensors for non-self RNA. Immunol Rev 2011; 243: 91–98.

    Article  PubMed  Google Scholar 

  110. Loo YM, Gale M . Immune signaling by RIG-I-like receptors. Immunity 2011; 34: 680–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li Y, Fan X, He X, Sun H, Zou Z, Yuan H et al. MicroRNA-466l inhibits antiviral innate immune response by targeting interferon-alpha. Cell Mol Immunol 2012; in press.

  112. Wang P, Gu Y, Zhang Q, Han Y, Hou J, Lin L et al. Identification of resting and type I IFN-activated human NK cell miRNomes reveals microRNA-378 and microRNA-30e as negative regulators of NK cell cytotoxicity. J Immunol 2012; 189: 211–221.

    Article  CAS  PubMed  Google Scholar 

  113. Papadopoulou AS, Dooley J, Linterman MA, Pierson W, Ucar O, Kyewski B et al. The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-alpha receptor. Nat Immunol 2012; 13: 181–187.

    Article  CAS  Google Scholar 

  114. Nachmani D, Lankry D, Wolf DG, Mandelboim O . The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination. Nat Immunol 2010; 11: 806–813.

    Article  CAS  PubMed  Google Scholar 

  115. Grey F, Meyers H, White EA, Spector DH, Nelson J . A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog 2007; 3: 163.

    Article  CAS  Google Scholar 

  116. Murphy E, Vanicek J, Robins H, Shenk T, Levine AJ . Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. Proc Natl Acad Sci USA 2008; 105: 5453–5458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kim S, Lee S, Shin J, Kim Y, Evnouchidou I, Kim D et al. Human cytomegalovirus microRNA miR-US4-1 inhibits CD8+ T cell responses by targeting the aminopeptidase ERAP1. Nat Immunol 2011; 12: 984–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D . SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 2005; 435: 682–686.

    Article  CAS  PubMed  Google Scholar 

  119. Lo AK, To KF, Lo KW, Lung RW, Hui JW, Liao G . Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci USA 2007; 104: 16164–16169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Samols MA, Skalsky RL, Maldonado AM, Riva A, Lopez MC, Baker HV et al. Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog 2007; 3: 65.

    Article  CAS  Google Scholar 

  121. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 2005; 102: 3627–3632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice. Proc Natl Acad Sci USA 2006; 103: 7024–7029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC et al. Kaposi's sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol 2007; 81: 12836–12845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gottwein E, Mukherjee N, Sachse C, Frenzel C, Majoros WH, Chi JT et al. A viral microRNA functions as an orthologue of cellular miR-155. Nature 2007; 450: 1096–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Otsuka M, Jing Q, Georgel P, New L, Chen J, Mols J et al. Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity 2007; 27: 123–134.

    Article  CAS  PubMed  Google Scholar 

  126. Triboulet R, Mari B, Lin YL, Chable-Bessia C, Bennasser Y, Lebrigand K et al. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 2007; 315: 1579–1582.

    Article  CAS  PubMed  Google Scholar 

  127. Matskevich AA, Moelling K . Dicer is involved in protection against influenza A virus infection. J Gen Virol 2007; 88: 2627–2635.

    Article  CAS  PubMed  Google Scholar 

  128. Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 2007; 13: 1241–1247.

    Article  CAS  PubMed  Google Scholar 

  129. Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C et al. A cellular microRNA mediates antiviral defense in human cells. Science 2005; 308: 557–560.

    Article  CAS  PubMed  Google Scholar 

  130. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P . Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005; 309: 1577–1581.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (no. 81070880) and China Postdoctoral Science Foundation funded project (no. 42201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingke Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Shi, X. MicroRNAs in the regulation of TLR and RIG-I pathways. Cell Mol Immunol 10, 65–71 (2013). https://doi.org/10.1038/cmi.2012.55

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.55

Keywords

This article is cited by

Search

Quick links