Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adenovirus replication–competent vectors (KD1, KD3) complement the cytotoxicity and transgene expression from replication-defective vectors (Ad-GFP, Ad-Luc)

Abstract

The successful clinical application of adenovirus (Ad) in cancer control has been of limited success because of the current inability to infect the majority of cancer cells with a large amount of vector. In this study, we show that when human lung tumors growing in immunodeficient nude mice were coinfected with a replication-defective (RD) Ad vector expressing green fluorescent protein and a replication-competent (RC) Ad vector named KD3, KD3 enhanced the expression of green fluorescent protein throughout the tumor. Also, KD3 and another RC vector named KD1 complemented the expression of luciferase from a RD vector in a human liver tumor xenotransplant in nude mice. Altogether, these results suggest that the combination of a RD vector with a RC vector might be a more effective treatment for cancer than either vector alone due to more widespread dissemination of the virus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Horwitz MS . Adenoviruses In: Fields BN, Knipe DM, Howley PM, eds Fields Virology 3rd ed Philadelphia, PA: Lippincott-Raven Publishers 1996 2149–2171

    Google Scholar 

  2. Crystal RG . In vivo and ex vivo gene therapy strategies to treat tumors using adenovirus gene transfer vectors Cancer Chemother Pharmacol 1999 Suppl 43: S90–S99

    Article  Google Scholar 

  3. Alemany R, Balague C, Curiel DT . Replicative adenoviruses for cancer therapy Nat Biotechnol 2000 18: 723–727

    Article  CAS  PubMed  Google Scholar 

  4. Wold WSM, Chinnadurai G . DNA virus replication In: Cann AJ, ed Frontiers in Molecular Biology Oxford, UK: Oxford Univ. Press 2000 200–232

    Google Scholar 

  5. White E . Regulation of apoptosis by adenovirus E1A and E1B oncogenes Semin Virol 1998 8: 505–513

    Article  CAS  Google Scholar 

  6. Wold WS, Doronin K, Toth K, Kuppuswamy M, Lichtenstein DL, Tollefson AE . Immune responses to adenoviruses: viral evasion mechanisms and their implications for the clinic Curr Opin Immunol 1999 11: 380–386

    Article  CAS  PubMed  Google Scholar 

  7. Barker DD, Berk AJ . Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection Virology 1987 156: 107–121

    Article  CAS  PubMed  Google Scholar 

  8. Bischoff JR, Kirn DH, Williams A et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells Science 1996 274: 373–376

    Article  CAS  PubMed  Google Scholar 

  9. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH . ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents Nat Med 1997 3: 639–645

    Article  CAS  PubMed  Google Scholar 

  10. Heise CC, Williams AM, Xue S, Propst M, Kirn DH . Intravenous administration of ONYX-015, a selectively replicating adenovirus, induces antitumoral efficacy Cancer Res 1999 59: 2623–2628

    CAS  PubMed  Google Scholar 

  11. Kao CC, Yew PR, Berk AJ . Domains required for in vitro association between the cellular p53 and the adenovirus 2 E1B 55K proteins Virology 1990 179: 806–814

    Article  CAS  PubMed  Google Scholar 

  12. Sarnow P, Ho YS, Williams J, Levine AJ . Adenovirus E1B-58 kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells Cell 1982 28: 387–394

    Article  CAS  PubMed  Google Scholar 

  13. Martin MED, Berk AJ . Adenovirus E1B 55K represses p53 activation in vitro J Virol 1998 72: 3146–3154

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Martin ME, Berk AJ . Corepressor required for adenovirus E1B 55,000-molecular-weight protein repression of basal transcription Mol Cell Biol 1999 19: 3403–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roth J, Konig C, Wienzek S, Weigel S, Ristea S, Dobbelstein M . Inactivation of p53 but not p73 by adenovirus type 5 E1B 55-kilodalton and E4 34-kilodalton oncoproteins J Virol 1998 72: 8510–8516

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Steegenga WT, Shvarts A, Riteco N, Bos JL, Jochemsen AG . Distinct regulation of p53 and p73 activity by adenovirus E1A, E1B, and E4orf6 proteins Mol Cell Biol 1999 19: 3885–3894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wienzek S, Roth J, Dobbelstein M . E1B 55-kilodalton oncoproteins of adenovirus types 5 and 12 inactivate and relocalize p53, but not p51 or p73, and cooperate with E4orf6 proteins to destabilize p53 J Virol 2000 74: 193–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leppard KN . E4 gene function in adenovirus, adenovirus vector and adeno-associated virus infections J Gen Virol 1997 78: 2131–2138

    Article  CAS  PubMed  Google Scholar 

  19. Harada JN, Berk AJ . p53-independent and -dependent requirements for E1B-55K in adenovirus type 5 replication J Virol 1999 73: 5333–5344

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hay JG, Shapiro N, Sauthoff H, Heitner S, Phupakdi W, Rom WN . Targeting the replication of adenoviral gene therapy vectors to lung cancer cells: the importance of the adenoviral E1B-55 kD gene Hum Gene Ther 1999 10: 579–590

    Article  CAS  PubMed  Google Scholar 

  21. Turnell AS, Grand RJ, Gallimore PH . The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status J Virol 1999 73: 2074–2083

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Doronin K, Toth K, Kuppaswamy M, Ward P, Tollefson AE, Wold WS . Tumor-specific, replication-competent adenovirus vectors overexpressing the Adenovirus Death Protein J Virol 2000 74: 6147–6155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rodriguez R, Schuur ER, Lim HY, Henderson GA, Sioms JW, Henderson JR . Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells Cancer Res 1997 57: 2559–2563

    CAS  PubMed  Google Scholar 

  24. Yu DC, Chen Y, Seng M, Dilley J, Henderson DR . The addition of adenovirus type 5 region E3 enables Calydon virus 787 to eliminate distant prostate tumor xenografts Cancer Res 1999 59: 4200–4203

    CAS  PubMed  Google Scholar 

  25. Yu DC, Sakamoto GT, Henderson DR . Identification of the transcriptional regulatory sequences of human kallikrein 2 and their use in the construction of Calydon virus 764, an attenuated replication competent adenovirus for prostate cancer therapy Cancer Res 1999 59: 1498–1504

    CAS  PubMed  Google Scholar 

  26. Hallenbeck PL, Chang YN, Hay C et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma Hum Gene Ther 1999 10: 1721–1733

    Article  CAS  PubMed  Google Scholar 

  27. Howe JA, Mymryk JS, Egan C, Branton PE, Bayley ST . Retinoblastoma growth suppressor and a 300-kDa protein appear to regulate cellular DNA synthesis Proc Natl Acad Sci USA 1990 87: 5883–5887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tollefson AE, Ryerse JS, Scaria A, Hermiston TW, Wold WS . The E3-11.6 kDa Adenovirus Death Protein (ADP) is required for efficient cell death: characterization of cells infected with adp mutants Virology 1996 220: 152–162

    Article  CAS  PubMed  Google Scholar 

  29. Tollefson AE, Scaria A, Hermiston TW, Ryerse JS, Wold LJ, Wold WS . The adenovirus death protein (E3-11.6 K) is required at very late stages of infection for efficient cell lysis and release of adenovirus from infected cells J Virol 1996 70: 2296–2306

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Motoi F, Sunamura M, Ding L et al. Effective gene therapy for pancreatic cancer by cytokines mediated by restricted replication-competent adenovirus Hum Gene Ther 2000 11: 223–235

    Article  CAS  PubMed  Google Scholar 

  31. Shinoura N, Yoshida Y, Asai A, Kirino T, Hamada H . Adenovirus-mediated transfer of p53 and Fas ligand drastically enhances apoptosis in gliomas Cancer Gene Ther 2000 7: 732–738

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Jeffery Whitsett who provided Ad-Luc, and Ratna Ray who provided Ad-GFP. A portion of this research was supported by National Institutes of Health Grants CA71704 and CA81829 (to WSMW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagy A Habib.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habib, N., Mitry, R., Seth, P. et al. Adenovirus replication–competent vectors (KD1, KD3) complement the cytotoxicity and transgene expression from replication-defective vectors (Ad-GFP, Ad-Luc). Cancer Gene Ther 9, 651–654 (2002). https://doi.org/10.1038/sj.cgt.7700481

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700481

Keywords

This article is cited by

Search

Quick links