Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Review Article

Selectively replicating viral vectors

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Nemunaitis J . Oncolytic viruses Invest New Drugs 1999 17: 375–386

    Article  CAS  PubMed  Google Scholar 

  2. Seidman MA, Hogan SM, Wendland RL et al. Variation in adenovirus receptor expression and adenovirus vector–mediated transgene expression at defined stages of the cell cycle Mol Ther 2001 4: 13–21

    Article  CAS  PubMed  Google Scholar 

  3. Kruyt FAE, Curiel DT . Toward a new generation of conditionally replicating adenoviruses: pairing tumor selectivity with maximal oncolysis Hum Gene Ther 2002 13: 485–495

    Article  CAS  PubMed  Google Scholar 

  4. Ramachandra M, Rahman A, Zou A et al. Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy Nat Publ Group 2001 19: 1035–1041

    CAS  Google Scholar 

  5. Hansen RM, Libnoch JA . Remission of chronic lymphocytic leukemia after smallpox vaccination Arch Intern Med 1978 138: 1137–1138

    Article  CAS  PubMed  Google Scholar 

  6. Bousser J, Zittoun R . Remission spontanee prolongee D-une leucemie lymphoide chromique Nouv Rev Fr Hematol 1965 5: 498–501

    CAS  PubMed  Google Scholar 

  7. Vladimirskaia EB . A case of prolonged spontaneous remission in a patient with chronic lymphocytic leukemia Probl Gematol Pereliv Krovi 1962 7: 51–54

    CAS  PubMed  Google Scholar 

  8. Weintraub LR . Lymphosarcoma: remission associated with viral hepatitis JAMA 1969 24: 1590–1591

    Article  Google Scholar 

  9. Sinkovics JG . Oncolytic viruses and viral oncolysates Ann Immunol Hung 1986 26: 271–290

    Google Scholar 

  10. Dock G . Influence of complicating diseases upon leukemia Am J Med Sci 1904 127: 563–592

    Article  Google Scholar 

  11. Bierman HR, Hammon WMcD, Eddie BU, Meyer KF, Shimkin MB . The effect of viruses and bacterial infections on neoplastic diseases Cancer Res 1950 10: 203–204 (abstract)

    Google Scholar 

  12. Blumming AZ, Ziegler JL . Regression of Burkitt's lymphoma in association with measles infection Lancet 1971 II: 105–106

    Article  Google Scholar 

  13. Taqi AM, Abdurraham MB, Yabubu AM, Fleming AF . Regression of Hodgkin's disease after measles Lancet 1981 I: 1112

    Article  Google Scholar 

  14. Hernandez A . Obsevacion de un ease de enfermedad de Hodgkin, con regression de los sintomas e infartos ganglionares, post-sarampion Rev Med Cubana 1949 60: 120–125

    Google Scholar 

  15. Bierman HR, Crile DM, Dod KS . Remissions in leukemia of childhood following acute infectious disease: Staphylococcus and Streptococcus, varicella, and feline panleukopenia Cancer 1953 6: 591–605

    Article  CAS  PubMed  Google Scholar 

  16. Pelner L, Fowler GA, Nauts HC . Effects of concurrent infections and their toxins on the course of leukemia Acta Med Scand 1958 338: 1–47 (supplement)

    CAS  Google Scholar 

  17. London RE . Multiple myeloma: report of a case showing unusual remission lasting two years following severe hepatitis Ann Intern Med 1955 43: 191–201

    Article  CAS  PubMed  Google Scholar 

  18. De Pace NG . Case Report: Cervical cancer regression following rabies vaccination Ginecologia 1912 9: 82

    Google Scholar 

  19. Pack GT . Note of the experimental use of rabies vaccine for melanomatosis Arch Dermatol Syph 1950 62: 694–695

    Article  CAS  Google Scholar 

  20. Southam CM . Present status of oncolytic virus studies Trans NY Acad 1960 22: 657–673

    Article  CAS  Google Scholar 

  21. Asada T . Treatment of human cancer with mumps virus Cancer 1974 34: 1907–1928

    Article  CAS  PubMed  Google Scholar 

  22. Yamanishi E, Takahashi M, Kurimura T, Ueda S, Minekawa Y . Studies on live mumps virus vaccine: III. Evaluation of newly developed live mumps virus vaccine Biken J 1970 13: 157–161

    CAS  PubMed  Google Scholar 

  23. Moore AE . Carcinolytic viruses In: Harris RJC, ed Biological Approaches to Cancer Chemotherapy New York: Academic Press 1961 365–370

    Google Scholar 

  24. Sinkovics JG, ed Die Grundlagen der Vorusforschung Budapest: Ungarische Akademie der Wissenchaften 1956 98–103 235–247

  25. Harris JE, Sinkovics JG eds. The Immunology of Malignant Disease St. Louis: Mosby 1976 180–182 464–467 475–478

    Google Scholar 

  26. Hoster HA, Zanes RP, von Haam E . Studies in Hodgkin's syndrome Cancer Res 1949 9: 473–480

    CAS  PubMed  Google Scholar 

  27. Brandt CD, Kim HW, Vargosko AJ et al. Infections in 18,000 infants and children in controlled study of respiration tract disease. Adenovirus pathogenicity in relation to serologic type and illness syndrome Am J Epidemiol 1969 90: 484–500

    Article  CAS  PubMed  Google Scholar 

  28. Hierholzer JC . Adenoviruses types 4, 7, and 21 vaccines: safety and immunogenicity J Infect Dis 1979 140: 48–53

    Article  Google Scholar 

  29. Takafuji ET . Simultaneous administration of live, enteric coated adenovirus types 4, 7, and 21 vaccines: safety and immunogenicity J Infect Dis 1979 140: 48–53

    Article  CAS  PubMed  Google Scholar 

  30. Green M, Wold WS, Mackey JK, Rigden P . Analysis of human tonsil and cancer DNA's and RNA's for DNA sequences in group C (serotypes 1, 2, 5 and 6) human adenoviruses Proc Natl Acad Sci USA 1979 76: 6606–6610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lesoon-Wood LA, Kim WH, Kleinmann HK . Systematic gene therapy with p53 reduces growth and metastases of a malignant human breast cancer in nude mice Hum Gene Ther 1995 6: 395–405

    Article  CAS  PubMed  Google Scholar 

  32. Zhang W, Alemany R, Wang J . Safety evaluation of AdCMV p53 in vitro and in vivo Hum Gene Ther 1995 6: 155–164

    Article  CAS  PubMed  Google Scholar 

  33. Nielsen LL, Dell J, Maxwell E . Efficacy of p53 adenovirus mediated gene therapy against human breast cancer xenographs Cancer Gene Ther 1997 4: 129–138

    CAS  PubMed  Google Scholar 

  34. Simon RH, Engelhardt JF, Yang Y . Adenovirus-mediated transfer of the CFRT gene to lung of non-human primates: toxicity study Hum Gene Ther 1993 4: 771–780

    Article  CAS  PubMed  Google Scholar 

  35. Xu M, Kumar D, Srinivas S . Parental gene therapy with p53 inhibits human breast tumor in vivo through a bystander mechanism without evidence of toxicity Hum Gene Ther 1998 8: 177–185

    Article  Google Scholar 

  36. Gomez-Foix AM, Coats WS, Baque S . Adenovirus-mediated transfer of the muscle flycogen phosporylate gene into hepatocytes confers altered regulation of glycogen J Biol Chem 1992 267: 25129–25134

    Article  CAS  PubMed  Google Scholar 

  37. Le Gal La Salle G, Robert JJ, Bernard S . An adenovirus vector for gene transfer into neurons and glia in the brain Science 1993 259: 988–990

    Article  CAS  PubMed  Google Scholar 

  38. Tursz T, Le Cesne A, Baldeyrou P . Phase I study of a recombinant adenovirus-mediated gene transfer in lung cancer patients J Natl Cancer Inst 1996 88: 1857–1863

    Article  CAS  PubMed  Google Scholar 

  39. Harvey BG, Worgall S, Ramirez M . Host responses to intradermal administration of a first generation replication deficient adenovirus vector to normal individuals Am Soc Gene Ther 1998 43a: (Abstract 167)

  40. Wodarz D . Viruses as antitumor weapons: defining conditions for remission Cancer Res 2001 61: 3501–3507

    CAS  PubMed  Google Scholar 

  41. Curiel DT . The development of conditionally replicative adenoviruses for cancer therapy Clin Cancer Res 2000 6: 3395–3399

    CAS  PubMed  Google Scholar 

  42. Yeh P, Perricaudet M . Advances in adenoviral vectors: from genetic engineering to biology FASEB J 1997 8: 615–623

    Article  Google Scholar 

  43. Wold WSM, Doronin K, Toth K, Kuppuswamy M, Lichtenstein DL, Tollefson AE . Immune responses to adenovirus: viral evasion mechanisms and their implications for the clinic Curr Opin Immunol 1999 11: 380–386

    Article  CAS  PubMed  Google Scholar 

  44. Mahr JA, Gooding LR . Immune evasion by adenoviruses Immunol Rev 1999 168: 121–130

    Article  CAS  PubMed  Google Scholar 

  45. Bai M, Harfe B, Freimuth P . Mutations that alter an Arg–Gly–Asp (RGD) sequence in the adenovirus type 2 penton base protein abolish its cell-rounding activity and delay virus reproduction in flat cells J Virol 1993 67: 5198–5205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins avB3 and avB5 promote adenovirus internalization but not virus attachment Cell 1993 73: 309–319

    Article  CAS  PubMed  Google Scholar 

  47. Huang S, Kamata T, Takada Y, Ruggezi ZM, Nemerow GR . Adenovirus interaction with distinct integrins mediates separate events in cell entry and gene delivery to hematopoietic cells J Virol 1996 70: 4502–4508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bergelson JM et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5 Science 1997 275: 1320–1323

    Article  CAS  PubMed  Google Scholar 

  49. Bergelson JM . Receptors mediating adenovirus attachment and internalization Biochem Pharmacol 1999 57: 975–979

    Article  CAS  PubMed  Google Scholar 

  50. Tomko RP, Xu R, Philipson L . HCAR and MCAR the human and mouse cellular receptors for subgroup C adenovirus and group B coxsackieviruses Proc Natl Acad Sci USA 1997 94: 3352–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Davidson E, Diaz RM, Hart IR, Santis G, Marshall JF . Integrin a5B1-mediated adenovirus infection is enhanced by the integrin-activating antibody TS2/16 J Virol 1997 71: 6204–6207

    Article  Google Scholar 

  52. FitzGerald DJ, Padmanabhan R, Pastan I, Wilingham MC . Adenovirus-induced release of epidermal growth factor and Pseudomonas toxin into the cytosol of KB cells during receptor-mediated endocytis Cell 1983 32: 607–617

    Article  CAS  PubMed  Google Scholar 

  53. Seth P, Willingham MC, Pastan I . Adenovirus-dependent release of the 51Cr from KB cells at an acidic pH J Biol Chem 1984 259: 14350–14353

    Article  CAS  PubMed  Google Scholar 

  54. Greber UF, Webster P, Weber J, Helenius A . The role of the adenovirus protease on virus entry into cells EMBO J 1996 15: 1766–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Greber UF et al. The role of the nuclear pore complex in adenovirus DNA entry EMBO J 1997 16: 5998–6007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Leopold PL et al. Fluorescent visions: dynamic tracking of the pathway of adenoviral gene transfer vectors in living cells Hum Gene Ther 1998 9: 367–378

    Article  CAS  PubMed  Google Scholar 

  57. Wang K, Huang S, Kapoor-Munshi A, Nemerow G . Adenovirus internalization and infection require dynamin J Virol 1998 72: 3455–3458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Suomalainen M et al. Microtubule-dependent plus-and-minus end-directed motilities are competing processes for nuclear targeting of adenovirus J Cell Biol 1999 144: 657–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wisnivesky JP, Leopold P, Crystal RG . Specific binding of adenovirus capcid to the nuclear envelope Hum Gene Ther 1999 10: 2187–2195

    Article  CAS  PubMed  Google Scholar 

  60. Leopold PL et al. Dynein-microtubule–mediated translocation of adenovirus serotype 5 occurs after endosomal lysis Hum Gene Ther 2000 11: 151–165

    Article  CAS  PubMed  Google Scholar 

  61. Saphire AC, Guan T, Schirmer EC, Nemerow GR, Gerace L . Nuclear import of adenovirus DNA in vitro involves the nuclear protein import pathway and hsc70 J Biol Chem 2000 275: 4298–4304

    Article  CAS  PubMed  Google Scholar 

  62. Flint J, Shenk T . Viral transactivating proteins Annu Rev Genet 1997 31: 177–212

    Article  CAS  PubMed  Google Scholar 

  63. Bischoff JR, Kirn DH, William A et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells Science 1996 274: 373–376

    Article  CAS  PubMed  Google Scholar 

  64. Rancourt C et al. Interleukin-6 modulated conditionally replicative adenovirus as an antitumor/cytotoxic agent for cancer therapy Clin Cancer Res 1999 5: 43–50

    CAS  PubMed  Google Scholar 

  65. Fueyo J et al. A mutant oncolytic adenovirus targeting the RB pathway produces anti-glioma effect in vivo Oncogene 2000 19: 2–12

    Article  CAS  PubMed  Google Scholar 

  66. Doronin K et al. Tumor-specific, replication-competent adenovirus vectors over expressing the adenovirus death protein J Virol 2000 74: 6147–6155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Howe J et al. Evaluation of E1-mutant adenoviruses as conditionally replicating agents for cancer therapy Mol Ther 2000 2: 485–495

    Article  CAS  PubMed  Google Scholar 

  68. Heise C et al. An adenovirus E1-A mutant that demonstrate potent and selective systemic anti-tumoral efficacy Nat Med 2000 6: 1134–1139

    Article  CAS  PubMed  Google Scholar 

  69. Kratzer F, Rosorius O, Hieger P et al. The adenovirus type 5 EIB–55 K oncoprotein is a highly active shuttle protein and shuttling is independent of E4orf6 and Mdm2 Oncogene 2000 19: 850–857

    Article  CAS  PubMed  Google Scholar 

  70. Harada J, Berk A . p53-independent and dependents requirements for EIB–55 kD in adenovirus type 5 replication J Virol 1999 73: 5333–5344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Curiel DT . Midkine promoter-based adenoviral vector gene therapy for pediatric solid tumors Cancer Res 2000 60: 4305–4310

    PubMed  Google Scholar 

  72. Gomez-Navarro J, Curiel DT . Conditionally replicative adenoviral vectors for cancer gene therapy Lancet Oncol 2000 1: 148–158

    Article  CAS  PubMed  Google Scholar 

  73. Kirn D . Clinical research results with dl1520 (ONYX-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Ther 2001 8: 89–98

    Article  CAS  PubMed  Google Scholar 

  74. Rodriguez R, Schuur ER, Lim HY, Henderson GA, Simons JW, Henderson DR . Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells Cancer Res 1997 57: 2559–2563

    CAS  PubMed  Google Scholar 

  75. Alemany R, Lai S, Lou Y-C, Jan H, Fang X, Zhang W-W . Complementary adenoviral vectors for oncolysis Cancer Gene Ther 1999 6: 21–25

    Article  CAS  PubMed  Google Scholar 

  76. Braithwaite AW, Russel IA . Induction of cell death by adenovirus Apoptosis 2001 6: 359–370

    Article  CAS  PubMed  Google Scholar 

  77. Tollefson AE, Scaria A, Saha SK, Wold LJ, Wold WS . The 11,600-MW protein encoded by region E3 of adenovirus is expressed early but is greatly amplified at late stages of infection J Virol 1992 66: 3633–3642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Doronin K, Toth K, Kuppuswamy M, Ward P, Tollefson AE, Wold WS . Tumor-specific replication-competent adenovirus vectors overexpressing the adenovirus death protein J Virol 2000 74: 6147–6155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. McCart JA, Puhlmann M, Lee J et al. Complex interactions between the replicating oncolytic effect and the enzyme/prodrug effect of vaccinia-mediated tumor regression Gene Ther 2000 7: 1217–1223

    Article  CAS  PubMed  Google Scholar 

  80. Hawkins LK, Hermiston TW . Gene delivery from the E3 region of replicating human adenovirus: evaluation of the ADP region Gene Ther 2001 8: 1131–1141

    Google Scholar 

  81. Jordan MA, Toso RJ, Thrower D, Wilson L . Mechanism of mitotic block and inhibition of cell proliferation by Taxol at low concentrations Proc Natl Acad Sci USA 1993 90: 9552–9556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Long BH, Fairchild CR . Paclitaxel inhibits progression of mitotic cells to GI phase by interference with spindle formation without affecting other microtubule functions anaphase and telephase Cancer Res 1994 54: 4355–4361

    CAS  PubMed  Google Scholar 

  83. Adams JD et al. Taxol: a history of pharmaceutical development and current pharmaceutical concerns J Natl Cancer Inst Monogr 1993 141–147

  84. Kohn KW, Jackman J, O'Connor PM . Cell cycle control and cancer chemotherapy J Cell Biochem 1994 54: 440–452

    Article  CAS  PubMed  Google Scholar 

  85. Edelman MJ, Candra DR . Promising new agents in the treatment of non-small cell lung cancer Cancer Chemother Pharmacol 1996 37: 385–393

    Article  CAS  PubMed  Google Scholar 

  86. Ikeda K et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses Nat Med 1999 5: 881–887

    Article  CAS  PubMed  Google Scholar 

  87. Wold WS, Hermiston TW, Tollefson AE . Adenovirus proteins that subvent host defenses Trends Microbiol 1994 2: 437–443

    Article  CAS  PubMed  Google Scholar 

  88. Wold WS, Tollefson AE, Hermiston TW . E3 transcription unit of adenovirus Curr Top Microbiol Immunol 1995 199: 237–274

    CAS  PubMed  Google Scholar 

  89. Horwitz MS, Tufariello J, Grunhaus A . Model system for studying the effects of adenovirus E3 gene on virulence in vivo Curr Top Microbiol Immunol 1995 199: 195–211

    CAS  PubMed  Google Scholar 

  90. Lee MG, Abina MA, Haddada H et al. The constitutive expression of the immunomodulatory gp 19 k protein in E1–E3 adenoviral vectors strongly reduces the host cytotoxic T-cell response against the vector Gene Ther 1995 2: 256–262

    CAS  PubMed  Google Scholar 

  91. Bett AJ, Haddara W, Prevec L et al. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3 Proc Natl Acad Sci USA 1994 91: 8802–8806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lian Y . Insertion of the adenoviral E3 region into a recombinant viral vector prevents antiviral humoral and cellular immune responses and permits long-term gene expression Proc Natl Acad Sci USA 1997 94: 2587–2592

    Article  Google Scholar 

  93. Elkon KB . Tumor necrosis factor α plays a central role in immune-mediated clearance of adenoviral vectors Immunology 1997 94: 9814–9819

    CAS  Google Scholar 

  94. Benihoud K . Efficient, repeated adenovirus-mediated gene transfer in mice lacking both tumor necrosis factor alpha and lymphotoxin α J Virol 1998 72: 9514–9525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Alcami A, Koszinowski UH . Viral mechanisms of immune evasion Immunol 2000 21: 447–455 (Today)

    CAS  Google Scholar 

  96. Nash P, Barret JX, Cao S et al. Immunomodulation by viruses: the myxoma virus story Immunol Rev 1999 168: 103–120

    Article  CAS  PubMed  Google Scholar 

  97. Smith GL, Symons JA, Khanna A et al. Vaccinia virus immune evasion Immunol Rev 1997 159: 137–154

    Article  CAS  PubMed  Google Scholar 

  98. Smith VP, Bryant NA, Alcami A . Ectromelia, baccinia and cowpox viruses encode secreted interleukin-18–binding proteins J Gen Virol 2000 81: 1223–1230

    CAS  PubMed  Google Scholar 

  99. Spriggs M . One step ahead the game: viral immunomodulatory molecules Annu Rev Immunol 1996 14: 101–130

    Article  CAS  PubMed  Google Scholar 

  100. Saraiva M, Alcami A . CrmE, a novel soluble tumor necrosis factor receptor encoded by poxviruses J Virol 2001 75: 226–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mahr JA, Gooding LR . Immune evasion by adenoviruses Immunol Rev 1999 168: 121–130

    Article  CAS  PubMed  Google Scholar 

  102. Rahman A, Tsai V, Goudreau A et al. Specific depletion of human anti-adenovirus antibodies facilitates transduction in an in vivo model for systematic gene therapy Mol Ther 2001 1: 15–25 (0016)

    Google Scholar 

  103. Lorence RM, Roberts MS, Groene WS et al. Replication-competent, oncolytic Newcastle disease virus for cancer therapy In: Driever PH, Roabkin SD, eds Replication-Competent Viruses for Cancer Therapy Basel, Switzerland: Karger (in press)

    Google Scholar 

  104. Li E, Stupack D, Bokoch GM et al. Adenovirus endocytosis requires actin cytoskeleton organization mediated by Rho family GTPases J Virol 1998 72: 8806–8812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wolff G et al. Enhancement of in vivo adenovirus-mediated gene transfer and expression by prior depletion of tissue macrophages in the target organ J Virol 1997 71: 624–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Biewenga J et al. Macrophage depletion in the rat after intraperitoneal administration of liposome-encapsulated clodronate: depletion kinetics and accelerated repopulation of peritoneal and omental macrophages by administration of Freund's adjuvant Cell Tissue Res 1995 280: 189–196

    CAS  PubMed  Google Scholar 

  107. McCuskey RS, McCuskey PA, Urbaschek R et al. Kupffer cell function in host defense Rev Infect Dis 1999 9: S616–S619

    Google Scholar 

  108. Huitinga L et al. Macrophages in T-cell line–medicated demyelination and chronic relapsing experimental autoimmune encephalomyelitis in Lewis rats Clin Exp Immunol 1995 10: 344–351

    Google Scholar 

  109. Laman JD, Kors N, van Rooijen N et al. Mechanism of follicular trapping localization of immune complexes and cell remnants after elimination and repopulation of different spleen cell populations Immunology 1990 7157–7162

  110. Pinto AJ, Stewart D, van Rooijen N et al. Selective depletion of liver and splenic macrophages using lyposomes encapsulating the drug dichloromethylene diphosphonate: effects of antimicrobial resistance J Leukoc Biol 1991 49: 579–586

    Article  CAS  PubMed  Google Scholar 

  111. Qiam Q, Jutila A, van Rooijen N et al. Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidates J Immunol 1994 152: 5000–5008

    Google Scholar 

  112. Tscaikowsky D, Brain JD . Effects of liposime-encapsulated dichloromethylene diphosphonate on macrophage function and endotoxin-induced mortality Biochim Biophys Acta 1994 1222: 323–330

    Article  Google Scholar 

  113. Van Rooijen N . The liposome-mediated macrophage “suicide” technique J Immunol Methods 1989 124: 1–6

    Article  CAS  PubMed  Google Scholar 

  114. Van Rooijen N, Kors N, Kraal G . Macrophage subset repopulation in the spleen differential kinetics after liposome-mediated elimination J Leukoc Biol 1989 45: 97–104

    Article  CAS  PubMed  Google Scholar 

  115. Van Rooijen N, Kors N, van der ende M et al. Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphonate Cell Tissue Res 1990 260: 215–222

    Article  CAS  PubMed  Google Scholar 

  116. Van Rooijen N, Sanders A . Liposome mediated depletion of macrophages mechanism of action preparation of lyposomes and application J Immunol Methods 1994 174: 83–93

    Article  CAS  PubMed  Google Scholar 

  117. Van Rooijen N, Sanders A . Kupffer cell depletion by liposome-delivered drugs: comparative activity of intracellular clodronate propamidine and ethylenediaminetetraacetic acid Hepatology 1996 23: 1239–1243

    Article  CAS  PubMed  Google Scholar 

  118. Vreden SG . Kupffer cell elimination enhances development of liver schizonts of Plasmodium berghei in rats Infect Immun 1993 61: 1936–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rahman A, Tsai V, Goudreau A et al. Specific depletion of human anti-adenovirus antibodies facilitates transduction in an in vivo model for systematic gene therapy Mol Ther 2001 3: 768–778

    Article  CAS  PubMed  Google Scholar 

  120. Lechner MS, Mack DH, Finicle AB et al. Human papilloma virus E6 proteins bind p53 in vivo and abrogate p53-mediated repression of transcription EMBO J 1992 11: 3045–3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gannon JV, Lane DP . P53 and DNA polymerase alpha compete for binding to SV40 T antigen Nature 1987 329: 456–458

    Article  CAS  PubMed  Google Scholar 

  122. Goodrum FD, Ornelles DA . The early region 1B 55-kilodalton oncoprotein of adenovirus relieved growth restrictions imposed on viral replication by the cell cycle J Virol 1997 71: 548–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hall AR, Dix BR, O'Carroll SJ, Braithwaite AW . P-53 dependent cell death/apoptosis is required for a productive adenovirus infection Nat Med 1998 4: 1068–1072

    Article  CAS  PubMed  Google Scholar 

  124. Turnell AS, Grand RJ, Gallimore PH . The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status J Virol 1999 73: 2074–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Goodrum FD, Ornelles DA . P53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic injection J Virol 1998 72: 9479–9490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Harada J, Berk AJ . P53-independent and -dependent requirements for E1B–55 kD in adenovirus type 5 replication J Virol 1999 73: 5333–5344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH . ONYX-015, an E1B gene–attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents Nat Med 1997 3: 639–645

    Article  CAS  PubMed  Google Scholar 

  128. Hall AR, Dix BR, O'Carroll SJ et al. P-53–dependent cell death/apoptosis is required for a productive adenovirus infection Nat Med 1998 4: 1068–1072

    Article  CAS  PubMed  Google Scholar 

  129. Kirn D, Hermiston T, McCormick LF . ONYX-015: clinical data are encouraging Nat Med 1998 4: 1341–1342

    Article  CAS  PubMed  Google Scholar 

  130. Rothmann T, Hengstermann A, Whitaker NJ, Scheffner M, zur Hausen H . Replication of ONYX-015, a potential anticancer adenovirus, is dependent of p53 status in tumor cells J Virol 1998 72: 9470–9478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. De-Chau Yu, Sakamoto GT, Henderson DR . Identification of the transcriptional regulatory sequences of human kallikrein 2 and their use in the construction of calydon virus 764, an attenuated replication competent adenovirus for prostate cancer therapy Cancer Res 1999 59: 1498–1504

    Google Scholar 

  132. Habib NA, Mitry RR, Sarraf CE et al. Assesment of growth inhibition and morphological changes in in vivo hepatocellular carcinoma models post treatment with dl1520 adenovirus Cancer Gene Ther 2002 9: 414–420

    Article  CAS  PubMed  Google Scholar 

  133. Kenney S, Pagano JS . Viruses as oncolytic agents: a new age for “therapeutic” viruses? J Nat Cancer Inst 1994 86: 1185–1186

    Article  CAS  PubMed  Google Scholar 

  134. Yang Y, Nunes FA, Berenscsi KM, Furth EE, Gonezol E, Wilson JM . Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy Proc Natl Acad Sci USA 1994 91: 4407–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Nemunaitis J, Ganly I, Khuri F et al. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B–55 kD gene deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial Cancer Res 2000 60: 6359–6366

    CAS  PubMed  Google Scholar 

  136. Nemunaitis J, Khuri F, Ganly I et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer J Clin Oncol 2001 19: 289–298

    Article  CAS  PubMed  Google Scholar 

  137. Habib N, Salama H, Abu Median AAEL et al. Clinical trial E1B-deleted adenovirus (dl1520) gene therapy for hepatocellular carcinoma Cancer Gene Ther 2002 9: 254–259

    Article  CAS  PubMed  Google Scholar 

  138. Khuri F, Nemunaitis J, Ganly I et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with Cisplatin and 5-FU in patients with recurrent head and neck cancer Nat Med 2000 6: 879–885

    Article  CAS  PubMed  Google Scholar 

  139. Nemunaitis J, Cunningham C, Tong AW et al. Pilot trial of intravenous infusion of a replication-selective adenovirus (ONYX-015) in combination with chemotherapy or IL-2 treatment in refractory cancer patients Cancer Gene Ther (submitted for publication)

  140. Vasey PA, Shulman LN, Campos S et al. Phase I trial of intraperitoneal injection of the E1B–55-kD gene–deleted adenovirus ONYX-015 (d11520) given on days 1 through 5 every 3 weeks in patients with recurrent/refractory epithelial ovarian cancer J Clin Oncol 2002 6: 1562–1569

    Google Scholar 

  141. Ganly I et al. A phase I study of ONYX-015, and E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer Clin Cancer Res 2000 6: 798–806

    CAS  PubMed  Google Scholar 

  142. Reid T, Galanis E, Abbruzzese J et al. Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: safety, feasibility and biological activity J Clin Oncol. Proc Am Soc Clin Oncol 2001 20: 549

    Google Scholar 

  143. Mulvihill S, Warren R, Venook A et al. Safety and feasibility of injection with an E1B–55 kDa gene–deleted replication-selective adenovirus (ONYX-015) into primary carcinomas of the pancreas: a phase 1 trial Gene Ther 2001 8: 308–315

    Article  CAS  PubMed  Google Scholar 

  144. Scherer WF, Syverton JT, Gey GO . Studies on the propagation in vitro in vivo of poliomyelitis viruses: IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix J Exp Med 1953 97: 695–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Southam CM, Moore AE . Clinical studies of viruses as antineoplastic agents with particular reference to Egypt 101 virus Cancer 1952 1025–1034

  146. Smith RR, Huebner JR, Rowe WP, Schatten WE, Thomas LB . Studies on the use of viruses in the treatment of carcinoma of the cervix Cancer 1956 9: 1211–1218

    Article  PubMed  Google Scholar 

  147. Russell SJ . Replication vectors for gene therapy of cancer: risks, limitations and prospects Eur J Cancer 1994 30A: 1165–1171

    Article  CAS  PubMed  Google Scholar 

  148. Asada T . A new attempt for cancer therapy Jpn Red Cross Med J 1963 16: 9–19

    Google Scholar 

  149. Asada T . Treatment of human cancer with mumps virus Cancer 1974 34: 1907–1928

    Article  CAS  PubMed  Google Scholar 

  150. Yamanishi E, Takahashi M, Kurimura T, Ueda S, Minekawa Y . Studies on live mumps virus vaccine Biken J 1970 13: 157–161

    CAS  PubMed  Google Scholar 

  151. Csatary LK, Eckhardt S, Bukosza I et al. Attenuated veterinary virus vaccine for the treatment of cancer Cancer Detect Prev 1993 17: 619–627

    CAS  PubMed  Google Scholar 

  152. Csatary LK, Gergely P . Virus vaccines for the treatment of cancer Orv Hetil 1990 131: 2585–2588

    CAS  PubMed  Google Scholar 

  153. Shimizu Y, Hasumi K, Okudaira Y . Immunotherapy of advanced gynecologic cancer patients utilizing mumps virus Cancer Detect Prev 1988 12: 487–495

    CAS  PubMed  Google Scholar 

  154. Okuno Y, Asada T, Yamanishi K . Studies on the use of mumps virus for treatment of human cancer Biken J 1978 21: 37–49

    CAS  PubMed  Google Scholar 

  155. Freedman RS, Edwards CL, Bowen JM et al. Viral oncolysates in patients with advanced ovarian cancer Gynecol Oncol 1988 29: 337–347

    Article  CAS  PubMed  Google Scholar 

  156. Cassel WA, Garrett RE . Relationship between viral neurotropism and oncolysis: II. Study of influenza virus Cancer 1967 20: 440–444

    Article  CAS  PubMed  Google Scholar 

  157. Heicappell R, Schirmacher V, Von Hoegen P . Prevention of metastatic spread by postoperative immunotherapy with virally modified autologous tumor cells: I. Parameters for optional therapeutic effects Int J Cancer 1986 37: 569–577

    Article  CAS  PubMed  Google Scholar 

  158. Boone CW . Augmented immunogenicity of tumor cell homogenates infected with influenza virus Recent Results Cancer Res 1974 47: 394–400

    Article  Google Scholar 

  159. Ionnides CG, Platsoucas CD, Patenia R et al. T-cell functions in ovarian cancer patients treated with viral oncolysates: I. Increased helper activity to immunoglobulins production Anticancer Res 1990 10: 645–654

    Google Scholar 

  160. Mineta T, Rabkin SD, Martuza RL . Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant Cancer Res 1994 54: 3963–3966

    CAS  PubMed  Google Scholar 

  161. Chase M, Chung RY, Chiocca EA . An oncolytic viral mutant that delivers the CYP2B1 transgenes and augment cyclophosphamide chemotherapy Nat Biotechnol 1998 16: 444–448

    Article  CAS  PubMed  Google Scholar 

  162. Boviatsis EJ, Scharf JM, Chase M, Harringtonowall NW, Breakfield XO, Chiocca EA . Antitumor activity and reporter gene transfer into rat brain or ribonucleotide reductase Gene Ther 1994 323–331

  163. Chou J, Kein E, Whitley RJ, Roizman B . Mapping of herpes simplex virus-1 neurovirulence to gamma, 34.5, a gene nonessential for growth in culture Science 1990 250: 1262–1266 (Washington, DC)

    Article  CAS  PubMed  Google Scholar 

  164. Chou J, Roizman B . The y(34.5) gene of herpes simplex virus 1 precludes neoblastoma cells from triggering total shutoff of protein synthesis characteristic of programmed cell death in neuronal cells Proc Natl Acad Sci USA 1992 89: 3266–3270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. McKie EA, Maclean AR, Lewis AD et al. Selective in vitro replication of herpes simplex virus type (HSV-1) ICP34.5 null mutants in primary human CNS tumours — evaluation of a potentially effective clinical therapy Br J Cancer 1996 74: 745–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Martuza RL . Act locally, think globally Nat Med 1997 3: 1323

    Article  CAS  PubMed  Google Scholar 

  167. Alemany R, Gomez-Manzano C, Balague C et al. Gene therapy for gliomas: molecular targets, adenoviral vectors, and oncolytic adenoviruses Exp Cell Res 1999 252: 1–12

    Article  CAS  PubMed  Google Scholar 

  168. Pennisi E . Will a twist of viral fate lead to anew cancer treatment? Science 1996 274: 342–343 (Washington, DC)

    Article  CAS  PubMed  Google Scholar 

  169. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL . Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas Nat Med 1995 1: 938–943

    Article  CAS  PubMed  Google Scholar 

  170. Chambers R, Gillespe GY, Soroceanu L et al. Comparison of genetically engineered herpes simplex viruses for the treatment of brain tumors in SCID mouse model of human malignant glioma Proc Natl Acad Sci USA 1995 92: 1411–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kesari S, Randazzo BP, Valyi-Nagy T et al. Therapy of experimental human brain tumors using a neuroattenuated herpes simplex virus mutant Lab Invest 1995 73: 636–648

    CAS  PubMed  Google Scholar 

  172. Andreasky S, He B, Gillespe G et al. The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumors Proc Natl Acad Sci USA 1996 93: 11313–11318

    Article  Google Scholar 

  173. Lambright E, Kang EH, Force S et al. Effect of pre-existing anti-herpes immunity on the efficacy of herpes simplex virus therapy in a murine intraperitoneal tumor model Mol Ther 2000 2: 387–393

    Article  CAS  PubMed  Google Scholar 

  174. Randazzo BP, Bhat MG, Kesari S, Fraser NW, Brown SM . Treatment of experimental subcutaneous human melanoma with a replication-restricted herpes simplex virus mutant J Invest Dermatol 1997 108: 933–937

    Article  CAS  PubMed  Google Scholar 

  175. Toda M, Rabkin SD, Martuza RL . Treatment of human breast cancer in a brain metastatic model by G207, a replication competent multimutated herpes simplex virus 1 Hum Gene Ther 1998 9: 2173–2185

    Article  Google Scholar 

  176. Toda M, Rabkin AD, Kojima H, Martuza RL . Herpes simplex virus as in situ cancer vaccine for the induction of specific anti-tumor immunity Hum Gene Ther 1999 10: 385–393

    Article  CAS  PubMed  Google Scholar 

  177. Yoon SS, Carroll NM, Chiocca EA, Tanabe KK . Cancer gene therapy using a replication-competent herpes simplex virus type 1 vector Ann Surg 1998 228: 366–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Coukus G, Makrigiannakis A, Kang EH et al. Use of carrier cells to deliver a replication-selective herpes simplex virus-1 mutant for the intraperitoneal therapy of epithelial ovarian cancer Clin Cancer Res 1999 5: 1523–1537

    Google Scholar 

  179. Coukus G, Rubin SC, Molanr-Kimber KL . Application for recombinant herpes simplex virus-1 (HSV-1) for the treatment of malignancies outside the central nervous system Gene Ther Mol Biol 1999 3: 79–89

    Google Scholar 

  180. Lambright ES, Caparrelli D, Abbas A et al. Oncolytic therapy using a mutant type 1 herpes simplex virus and the role of the immune response Ann Thorac Surg 1999 68: 1756–1762

    Article  CAS  PubMed  Google Scholar 

  181. Kucharzuk JC, Randazzo B, Elshami AA et al. Use of a replication-restricted recombinant herpes virus to treat localized human malignancy Cancer Res 1997 57: 466–471

    Google Scholar 

  182. Toyozuimi T, Mick R, Abbas AE, Kang EH, Kaiser LR, Molnar-Kimber KL . Combined therapy with chemotherapeutic agents and herpes simplex virus type-1 ICP34.5 mutant (HSC-1716) in human non-small lung cancer Hum Gene Ther 1999 10: 3013–3029

    Article  Google Scholar 

  183. Advani SJ, Su-Mi Chung SY, Yan SY et al. Replication competent, nonneuroinvasive genetically engineered herpes virus is highly effective in the treatment of therapy-resistant experimental human tumors Cancer Res 1999 59: 2055–2058

    CAS  PubMed  Google Scholar 

  184. Carroll NM, Chiocca EA, Takahashi K, Tanabe KK . Enhancement of gene therapy specificity for diffuse colon carcinoma liver metastases with recombinant herpes simplex virus Ann Surg 1996 224: 323–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Papanastassiou V, Rampling R, Frase M et al. The potential for efficacy of the modified (ICP 34.5) herpes simplex virus HSV1716 following intratumoral injection into human malignant glioma: a proof of principle study Gene Ther 2002 9: 398–406

    Article  CAS  PubMed  Google Scholar 

  186. Jorgensen TJ, Katz S, Wittmack EK et al. Ionizing radiation does not alter the antitumor activity of herpes simplex virus vector G207 in subcutaneous tumor models of human and murine prostate cancer Neoplasia 2001 3: 451–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Spear MA, Sun F, Eling DJ et al. Cytotoxicity, apoptosis, and viral replication in tumor cells treated with oncolytic ribonucleotide-reductase–defective herpes simplex type 1 virus (hrR3) combined with ionizing radiation Cancer Gene Ther 2000 7: 1051–1059

    Article  CAS  PubMed  Google Scholar 

  188. Advani SJ, Sibley GS, Song PY et al. Enhancement of replication of genetically engineered herpes simplex viruses by ionizing radiation: a new paradigm for destruction of therapeutically intractable tumors Gene Ther 1998 5: 160–165

    Article  CAS  PubMed  Google Scholar 

  189. Advani SJ, Su-Mi Ching SY, Yan SY et al. Replication-competent, nonneuroinvasive genetically engineered herpes virus is highly effective in the treatment of therapy-resistant experimental human tumors Cancer Res 1999 59: 2055–2058

    CAS  PubMed  Google Scholar 

  190. Bradley JD, Kataoka Y, Advani S et al. Ionizing radiation improves survival in mice bearing intracranial high grade gliomas injected with genetically modified herpes simplex virus Clin Cancer Res 1999 5: 1517–1522

    CAS  PubMed  Google Scholar 

  191. Stephanie VB, Rubin SC, Coukus G, Amin KM, Albelda SM, Molnar-Kimber KL . Replication selective herpes simplex virus type 1 mutant therapy of cervical cancer is enhanced by low-dose radiation Hum Gene Ther 2002 13: 627–639

    Article  Google Scholar 

  192. Coukos G, Makrigiannakis A, Kang E, Rubin SC, Albelda SM, Molnar-Kimber KL . ICP34.5 deficient herpes simplex virus-1 kills ovarian cancer cells via non-apoptotic or p53-independent apoptotic death: implications for chemotherapy-resistant disease Clin Cancer Res 2000 6: 3342–3353

    CAS  PubMed  Google Scholar 

  193. Toyoizumi T, Mick R, Abbas AE, Kang EH, Kaiser LR, Molnar-Kimber KL . Combined therapy with chemotherapeutic agents and herpes simplex virus type 1 ICP34.5 mutant (HSV-1716) in human non-small cell lung cancer Hum Gene Ther 1999 10: 3013–3029

    Article  CAS  PubMed  Google Scholar 

  194. Endo T, Toda M, Watanabe M et al. In situ cancer vaccination with a replication-conditional HSV for the treatment of liver metastasis of colon cancer Cancer Gene Ther 2002 9: 142–148

    Article  CAS  PubMed  Google Scholar 

  195. Toda M, Rabkin SD, Martuza RL . Treatment of human breast cancer in a brain metastatic model by G207, a replication-competent multimutated herpes simplex virus 1 Hum Gene Ther 1998 9: 2177–2185

    Article  CAS  PubMed  Google Scholar 

  196. Toda M, Rabkin SD, Kojima H et al. Herpes simplex virus as an in situ cancer vaccine for the induction of specific anti-tumor immunity Hum Gene Ther 1999 10: 385–393

    Article  CAS  PubMed  Google Scholar 

  197. Toda M, Martuza RL, Koima H et al. In situ cancer vaccination: an IL-12 defective vector/replication-competent herpes simplex virus combination induces local and systemic antitumor activity J Immunol 1998 160: 4457–4464

    CAS  PubMed  Google Scholar 

  198. Parker JN, Gillespie GY, Love CE, Randall S, Whitley RJ, Markert JM . Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors Proc Natl Acad Sci USA 2000 2208–2213

    Article  CAS  Google Scholar 

  199. Andreansky S, He B, van Cott J et al. Treatment of intracranial gliomas in immunocompetent mice using herpes simplex viruses that express murine interleukins Gene Ther 1998 121–130

    Article  CAS  PubMed  Google Scholar 

  200. Toda M, Martuza RL, Kojima H, Rabkin SD . In situ cancer vaccination: an IL-12 defective vector/replication-competent herpes simplex virus combination induces local and systematic antitumor activity J Immunol 1998 160: 4457–4464

    CAS  PubMed  Google Scholar 

  201. Pawlik TM, Nakamura H, Yoon SS et al. Oncolysis of diffuse hepatocellular carcinoma by intravascular administration of a replication-competent, genetically engineered herpesvirus Cancer Res 2000 60: 2790–2795

    CAS  PubMed  Google Scholar 

  202. Rodriguez R, Schuur ER, Yeong Lim H, Henderson GA, Simons JW, Henderson DR . Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells Cancer Res 1997 57: 2559–2563

    CAS  PubMed  Google Scholar 

  203. DeWeese TL, van der Poel H, Li S et al. A phase 1 trial of CV706, a replication-competent, PSA selective oncolytic adenovirus for the treatment of locally recurrent prostate cancer following radiation therapy Cancer Res 2001 61: 7464–7472

    CAS  PubMed  Google Scholar 

  204. Chen Y, De Weese T, Dilley J et al. CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity Cancer Res 2001 61: 5453–5460

    CAS  PubMed  Google Scholar 

  205. Garzotto M, Haimovitz-Friedman A, Liao W-C et al. Reversal radiation resistance in LNCaP cells by targeting apoptosis through ceramide synthase Cancer Res 1999 59: 5194–5201

    CAS  PubMed  Google Scholar 

  206. Chen Y, De Weese T, Dilley J et al. CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity Cancer Res 2001 61: 5453–5460

    CAS  PubMed  Google Scholar 

  207. De-Chao Y, Chen Y, Seng M, Dilley J, Henderson DR . The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts Cancer Res 1999 59: 4200–4203

    Google Scholar 

  208. De-Chao Y, Chen Y, Dilley J et al. Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel Cancer Res 2001 61: 517–525

    Google Scholar 

  209. Li Y, De-Chao Y, Chen Y, Amin P, Zhang H, Henderson DR . A hepatocellular carcinoma-specific adenovirus variant, CV890, eliminates distant human liver tumors in combination with doxorubicin Cancer Res 2001 61: 6428–6436

    CAS  PubMed  Google Scholar 

  210. Hallenbeck PL, Chang YN, Hay C et al. A novel tumor specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma Hum Gene Ther 1999 10: 1721–1733

    Article  CAS  PubMed  Google Scholar 

  211. Khromykh AA . Replication-based vectors of positive strand RNA viruses Curr Opin Mol Ther 2000 2: 555–569

    CAS  PubMed  Google Scholar 

  212. Seth A, Ourmanov I, Schmitz JE et al. Immunization with a modified vaccinia virus expressing simian immunodeficiency virus (SIV) Gag–Pol primes for an anamnestic Gag-specific cytotoxic T-lymphocyte response and is associated with reduction of viremia after SIV challenge J Virol 2000 74: 2502–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Anraku I, Harvey TJ, Linedale R et al. Kunjin virus replicon vaccine vector induce protective CD8+ T-cell immunity J Virol 2002 76: 3791–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Ramsay AJ, Kent SJ, Strugnell RA, Suhrbier A, Thomson SA, Ramshaw IA . Genetic vaccination strategies for enhanced cellular, humoral and mucosal immunity Immunol Rev 1999 171: 27–44

    Article  CAS  PubMed  Google Scholar 

  215. Gorse GJ, Patel GB, Belshe RB . HIV type-1 vaccine–induced T cell memory and cytotoxic T lymphocyte responses in HIV type 1–uninfected volunteers AIDS Res Hum Retrovir 2001 17: 1175–1189

    Article  CAS  PubMed  Google Scholar 

  216. Rolph MS, Ramshaw IA . Recombinant viruses as vaccines and immunological tools Curr Opin Immunol 1997 9: 517–524

    Article  CAS  PubMed  Google Scholar 

  217. Albert ML, Sauter B, Bhardwaj N . Dendritic cells acquire antigen from apoptotic cells and induce class I–restricted CTLs Nature 1998 392: 86–89

    Article  CAS  PubMed  Google Scholar 

  218. Ho LJ, Wang JJ, Shaio MF et al. Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production J Immunol 2001 166: 1499–1506

    Article  CAS  PubMed  Google Scholar 

  219. Johnston LJ, Halliday GM, King NJ . Langerhans cells migrate to local lymph nodes following cutaneous injection with an arbovirus J Invest Dermatol 2000 114: 560–568

    Article  CAS  PubMed  Google Scholar 

  220. Johnston LJ, Halliday GM, King NJ . Langerhans cell migrate to local lymph nodes following cutaneous infection with an arbovirus J Invest Dermatol 2000 114: 560–568

    Article  CAS  PubMed  Google Scholar 

  221. Libarty DH, Pichayangkul S, Ajariyakhajorn C, Endy TP, Ennis FA . Human dendritic cells are activated by dengue virus infection: enhancement by gamma interferon and implications for disease pathogenesis J Virol 2001 75: 3501–3508

    Article  Google Scholar 

  222. Wu SJ, Grougard-Vogel G, Sun W et al. Human skin Langerhans cells are targets of dengue virus infection Nat Med 2000 6: 816–820

    Article  CAS  PubMed  Google Scholar 

  223. Sigal LJ, Crotty S, Andino R, Rock KL . Cytotoxic T-cell immunity to virus-infected non-hematopoietic cells requires presentation of exogenous antigen Nature 1999 398: 77–80

    Article  CAS  PubMed  Google Scholar 

  224. Gardner JP, Prolov I, Perri S et al. Infection of human dendritic cells by a sindbis virus replicon vector is determined by a single amino acid substitution in the E2 glycoprotein J Virol 2000 74: 11849–11985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. MacDonald GH, Johnston RE . Role of dendritic cell targeting in Venezuelan equine encephalitis virus pathogenesis J Virol 2000 74: 914–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Anduan T.

  227. Fueyo J, Gomez-Manzano C, Alemany R, et al . A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo Oncogene 2000 19: 2–12

    Article  CAS  PubMed  Google Scholar 

  228. Bayley ST, Mymryk JS . Adenovirus E1A proteins and transformation Int J Oncol 1994 5: 425–444

    CAS  PubMed  Google Scholar 

  229. Howe JA, Bayley ST . Effects of Ad5E1A mutant viruses on the cell cycle in relation to the binding of cellular proteins including the retinoblastoma protein and cyclin A Virology 1992 186: 15–24

    Article  CAS  PubMed  Google Scholar 

  230. Howe JA, Mymryk JS, Egan C, Branton PE, Bayley ST . Retinoblastoma growth suppressor and a 300-kDa protein appear to regulate cellular DNA synthesis Proc Natl Acad Sci USA 1990 87: 5883–5887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Wang HG, Draetta G, Moran E . E1A induces phosphorylation of the retinoblastoma protein independently of direct physical association between the E1A and retinoblastoma products Mol Cell Biol 1991 11: 4253–4265

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Wang HG, Rikitake Y, Carter MC et al. Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth J Virol 1993 67: 476–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Dyson N, Buchkovich K, Whyte P, Harlow E . Cellular proteins that are targeted by DNA tumor viruses for transformation Princess Takamatsu Symp 1989 20: 191–198

    CAS  PubMed  Google Scholar 

  234. Moran E . DNA tumor virus transforming proteins and the cell cycle Curr Opin Genet Dev 1993 3: 63–70

    Article  CAS  PubMed  Google Scholar 

  235. Dubensky TW Jr . (re-)Engineering tumor cell-selective replicating adenoviruses: a step in the right direction toward systematic therapy for metastatic disease Cancer Cell 2002 1: 307–308

    Article  CAS  PubMed  Google Scholar 

  236. Johnson L, Shen A, Boyle L et al. Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systematic antitumor agents Cancer Cell 2002 1: 325–337

    Article  CAS  PubMed  Google Scholar 

  237. Weinberg RA . The retinoblastoma protein and cell cycle control Cell 1995 81: 323–3330

    Article  CAS  PubMed  Google Scholar 

  238. Schutz A, Oertli D, Marti WR et al. Immunogenicity of nonreplicating recombinant vaccinia expressing HLA-A201 targeted or complete MART-1/Melan-A antigen Cancer Gene Ther 2001 8: 655–661 SP

    Article  CAS  PubMed  Google Scholar 

  239. Tmiryasova TM, Chen B, Fodor I . Replication-deficient vaccinia virus gene therapy vector: evaluation of exogenous gene expression mediated by PUV-inactivated virus in glioma cells J Gene Med 2001 3: 468–477 (September–October)

    Article  Google Scholar 

  240. Gomella LG, Mastranelo MJ, McCue PA, Maguire HC Jr, Mulholand SG, Lattime EC . Phase I study of intravesical vaccinia virus as a vector for gene therapy of bladder cancer J Urol 2001 166: 1291–1295 (October)

    Article  CAS  PubMed  Google Scholar 

  241. Wallack MK, Sivanandam M, Balch CM et al. Surgical adjuvant active specific immunotherapy for patients with stage III melanoma: the final analysis of data from a phase III, randomized, double-blind multicenter vaccinia melanoma oncolysate trial J Am Coll Surg 1998 187: 69–77

    Article  CAS  PubMed  Google Scholar 

  242. Mastrangelo MJ, Maguire HC Jr, Eisiniohr LC et al. Intratumoral recombinant GM-CSF–encoding virus to package amplicons containing cytokine gene therapy vector in cancer, persistent transgene expression despite antibody generation Cancer Gene Ther 2000 7: 663–670

    Article  CAS  Google Scholar 

  243. Naik AM, Xu H, Alexander HR et al. A mutant vaccinia virus with improved tumor selectivity Proceedings of the 54th Annual SSO Cancer Symposium 2001 40a

  244. Coffey MC, Strong JE, Forsyth PA et al. Reovirus therapy of tumors with activated Ras pathway Science 1998 282: 1332–1334

    Article  CAS  PubMed  Google Scholar 

  245. Hirasawa K, Yoon C, Sishikawa SG et al. Reovirus therapy of metastatic cancer models in immune-competent mice Proc Am Assoc Cancer Res 2001 42: 2427a

    Google Scholar 

  246. Hirasawa K, Nishikawa SG, Norman KI et al. Oncolytic reovirus against ovarian and colon cancer Cancer Res 2002 62: 1696–1701 (March 15)

    CAS  PubMed  Google Scholar 

  247. Robert MS, Lorence RM, Gronen WS et al. Treatment of neoplasms with viruses International Patent Publication No. Wo 99/18799 1999

  248. Stojdl DF, Lichty B, Knowles S et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus Nat Med 2000 6: 821–825

    Article  CAS  PubMed  Google Scholar 

  249. Schirrmacher V, Ahlert T, Probstle T et al. Immunization with virus-modified tumor cells Semin Oncol 1998 25: 677–696

    CAS  PubMed  Google Scholar 

  250. Batliwalla FM, Bateman BA, Serrano D et al. A 15 year follow up of AJCC stage 3 malignant melanoma patients treated post surgically with Newcastle disease virus (NDV) oncolysate and determination of alterations in the CD8 T cell repertoire Mol Med 1998 42: 2441a

    Google Scholar 

  251. Lorence RM, Robert MS, Gronen WS et al. Replication competent, oncolysate Newcastle disease virus for cancer therapy In: Hernaiz DP, Rabkin SD, eds Replication-Competent Viruses for Cancer Therapy Monographs in Virology Basel, Switzerland: Karger 2001 160–182 Vol. 22:

    Chapter  Google Scholar 

  252. Lorence RM, Roberts MS, Gronene WS et al. Regression of human tumor xenografts following intravenous treatment using PV701, a naturally attenuated oncolytic strain of Newcastle disease virus Proc Am Assoc Cancer Res 2001 42: 454 (Abstract 2442)

    Google Scholar 

  253. Lorence RM, Katubig BB, Reichard KW et al. Complete regression of human neoblastoma xenographs in athymic mice after local Newcastle disease virus therapy J Natl Cancer Inst 1994 86: 1228–1233

    Article  CAS  PubMed  Google Scholar 

  254. Lorence RM, Katubig BB, Reichard KW et al. Complete regression of human fibrosarcoma xenografts after local Newcastle disease virus therapy Cancer Res 1994 54: 6017–6021

    CAS  PubMed  Google Scholar 

  255. Cassel WA, Garrett RE . Newcastle disease virus as antineoplastic agent Cancer 1965 18: 863–868

    Article  CAS  PubMed  Google Scholar 

  256. Pecor AL, Rizvi N, Gary L et al. Phase I trial of Intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers J Clin Oncol 2002 20: 2251–2266

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Nemunaitis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemunaitis, J., Edelman, J. Selectively replicating viral vectors. Cancer Gene Ther 9, 987–1000 (2002). https://doi.org/10.1038/sj.cgt.7700547

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700547

This article is cited by

Search

Quick links