Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Review Article

Virotherapy clinical trials for regional disease: In situ immune modulation using recombinant poxvirus vectors

Abstract

The ability of viruses to readily infect tumor cells both in vitro and in vivo has resulted in their study as antitumor agents through a variety of strategies. Replicating and conditionally replicating viruses and recombinant viruses encoding genes for toxins and/or prodrugs have been studied for their direct antitumor activity with promising results. However, to date, the lack of a targettable construct able to localize to all tumors following systemic administration has proven to be a major limitation in their use for metastatic disease. The ability of a variety of well-characterized viruses to serve as vectors for expression of tumor antigens and/or cytokines has also resulted in their study as immunotherapeutic agents. In this review, we discuss preclinical and clinical data that support the use of recombinant poxviruses as vectors for in situ tumor transfection with immune-enhancing cytokines and immune costimulatory antigens. We hypothesize that such an approach will ultimately lead to enhanced immune recognition of tumor and the development of an effective systemic antitumor immune response capable of eradicating primary and metastatic tumor foci.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Lattime EC, Gerson SL . Gene Therapy of Cancer: Translational Approaches from Preclinical Studies to Clinical Implementation 2nd ed San Diego: Academic Press 2002 534

    Google Scholar 

  2. Thomas L . In: Lawrence HS, ed Cellular and Humoral Aspects of the Hypersensitive States New York: Hoeber-Harper 1959 529–532

    Google Scholar 

  3. Burnet FM . The concept of immunological surveillance Prog Exp Tumor Res 1970 13: 1

    Article  CAS  PubMed  Google Scholar 

  4. Bodurtha AJ, Berkelhammer J, Kim YH, Laucius JF, Mastrangelo MJ . A clinical, histologic, and immunologic study of a case of metastatic malignant melanoma undergoing spontaneous remission Cancer 1976 37: 735–742

    Article  CAS  PubMed  Google Scholar 

  5. Spontaneous Remission: An Annotated Bibliography Sausalito, CA: Institute of Noetic Sciences 1993 1–710

  6. Ostrand-Rosenberg S, Clements VK, Dissanayake S, Gilbert M, Pulaski BA, Qi L . Immunologic targets for the gene therapy of cancer In: Lattime EC, Gerson SL, eds Gene Therapy of Cancer: Translational Approaches from Preclinical Studies to Clinical Implementation 2nd ed San Diego: Academic Press 2002 128–144

    Google Scholar 

  7. Bornstein RS, Mastrangelo MJ, Sulit H et al. Immunotherapy of melanoma with intralesional BCG Natl Cancer Inst Monogr 1973 39: 213–220

    CAS  PubMed  Google Scholar 

  8. Laucius JF, Bodurtha AJ, Mastrangelo MJ, Creech RH . Bacillus Calmette–Guerin in the treatment of neoplastic disease J Reticuloendothel Soc 1974 16: 347–373

    CAS  PubMed  Google Scholar 

  9. Lamm DL, Thor DE, Harris SC, Reyna JA, Stogdill VD, Radwin HM . Bacillus Calmette–Guerin immunotherapy of superficial bladder cancer J Urol 1980 124: 38–42

    Article  CAS  PubMed  Google Scholar 

  10. Mastrangelo MJ, Maguire HCJ, Lattime EC, Berd D . Whole cell vaccines In: DaVita VT, Hellman S, Rosenberg SA, eds Biological Therapy of Cancer 2nd ed Philadelphia: Lippincott 1995 648–658

    Google Scholar 

  11. Mastrangelo MJ, Sato T, Lattime EC, Maguire HC Jr, Berd D . Cellular vaccine therapies for cancer In: Foon KA, Muss HB, eds Biological and Hormonal Therapies of Cancer Boston: Kluwer Academic Publishing 1998 35–50

    Chapter  Google Scholar 

  12. Hu X, Chakraborty NG, Sporn JR, Kurtzman SH, Ergin MT, Mukherji B . Enhancement of cytolytic T lymphocyte precursor frequency in melanoma patients following immunization with MAGE-1 peptide loaded antigen presenting cell–based vaccine Cancer Res 1996 56: 2479–2483

    CAS  PubMed  Google Scholar 

  13. Schlom J, Tsang K-Y, Kantor J et al. Strategies in the development of recombinant vaccines for colon cancer Semin Oncol 1999 26: 672–682

    CAS  PubMed  Google Scholar 

  14. Marshall JL, Hoyer RJ, Toomey MA et al. Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses J Clin Oncol 2000 18: 3964–3973

    Article  CAS  PubMed  Google Scholar 

  15. Horig H, Lee DS, Conkright W et al. Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule Cancer Immunol Immunother 2000 49: 504–514

    Article  CAS  PubMed  Google Scholar 

  16. Eder JP, Kantoff PW, Roper K et al. A phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer Clin Cancer Res 2000 6: 1632–1638

    CAS  PubMed  Google Scholar 

  17. Sanda MG, Smith DC, Charles LG et al. Recombinant vaccinia-PSA (PROSTVAC) can induce a prostate-specific immune response in androgen-modulated human prostate cancer Urology 1999 53: 260–266

    Article  CAS  PubMed  Google Scholar 

  18. Fearon ER, Pardoll DM, Itaya T et al. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response Cell 1990 60: 397–403

    Article  CAS  PubMed  Google Scholar 

  19. Asher AL, Mulé JJ, Kasid A et al. Murine tumor cells transduced with the gene for tumor necrosis factor-α: evidence for paracrine immune effects of tumor necrosis factor against tumors J Immunol 1991 146: 3227–3234

    CAS  PubMed  Google Scholar 

  20. Watanabe Y, Kuribayashi K, Miyatake J et al. Exogenous expression of mouse interferon-gamma cDNA in mouse neuroblastoma C1300 cells results in reduced tumorigenicity by augmented anti-tumor immunity Proc Natl Acad Sci USA 1989 86: 9456–9460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tepper RI, Pattengale PK, Leder P . Murine interleukin-4 displays potent anti-tumor activity in vivo Cell 1989 57: 503–512

    Article  CAS  PubMed  Google Scholar 

  22. Connor J, Bannerji R, Saito S, Heston W, Fair W, Gilboa E . Regression of bladder tumors in mice treated with interleukin 2 gene–modified tumor cells J Exp Med 1993 177: 1127–1134

    Article  CAS  PubMed  Google Scholar 

  23. Saito S, Bannerji R, Gansbacher B et al. Immunotherapy of bladder cancer with cytokine gene–modified tumor vaccines Cancer Res 1994 54: 3516–3520

    CAS  PubMed  Google Scholar 

  24. Dranoff G, Jaffee E, Lazenby A . Vaccination with irradiated tumor cells engineered to secrete murine granulocyte–macrophage colony stimulating factor stimulates potent, specific, and long lasting anti-tumor immunity Proc Natl Acad Sci USA 1993 90: 3539–3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Simons JW, Mikhak B, Chang JF et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte–macrophage colony-stimulating factor using ex vivo gene transfer Cancer Res 1999 59: 5160–5168

    CAS  PubMed  Google Scholar 

  26. Simons JW, Jaffee EM, Weber CE et al. Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte–macrophage colony-stimulating factor gene transfer Cancer Res 1997 57: 1537–1546

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nelson WG, Simons JW, Mikhak B et al. Cancer cells engineered to secrete granulocyte–macrophage colony- stimulating factor using ex vivo gene transfer as vaccines for the treatment of genitourinary malignancies Cancer Chemother Pharmacol 2000 46: S67–S72

    Article  CAS  PubMed  Google Scholar 

  28. Perussia B, Chan SH, D'Andrea A et al. Natural killer cell stimulatory factor or interleukin-12 has differential effects on the proliferation of TCRαβ+, TCRτδ+ T lymphocytes and NK cells J Immunol 1992 149: 3495–3502

    CAS  PubMed  Google Scholar 

  29. Golumbek PT, Lazenby AJ, Levitsky HI et al. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4 Science 1991 254: 713–716

    Article  CAS  PubMed  Google Scholar 

  30. Kusumoto M, Umeda S, Ikubo A et al. Phase 1 clinical trial of irradiated autologous melanoma cells adenovirally transduced with human GM-CSF gene Cancer Immunol Immunother 2001 50: 373–381

    Article  CAS  PubMed  Google Scholar 

  31. Chang AE, Li Q, Bishop DK, Normolle DP, Redman BD, Nickoloff BJ . Immunogenetic therapy of human melanoma utilizing autologous tumor cells transduced to secrete granulocyte–macrophage colony-stimulating factor Hum Gene Ther 2000 11: 839–850

    Article  CAS  PubMed  Google Scholar 

  32. Soiffer R, Lynch T, Mihm M et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte–macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma Proc Natl Acad Sci USA 1998 95: 13141–13146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tahara H, Zeh HJ, Storkus WJ et al. Fibroblasts genetically engineered to secrete interleukin 12 can suppress tumor growth and induce antitumor immunity to a murine melanoma in-vivo Cancer Res 1994 54: 182–189

    CAS  PubMed  Google Scholar 

  34. Lotze MT, Rubin JT, Carty S et al. Gene therapy of cancer: a pilot study of IL-4-gene–modified fibroblasts admixed with autologous tumor to elicit an immune response Hum Gene Ther 1994 5: 41–55

    Article  CAS  PubMed  Google Scholar 

  35. Kang WK, Park C, Yoon HL et al. Interleukin 12 gene therapy of cancer by peritumoral injection of transduced autologous fibroblasts: outcome of a phase I study Hum Gene Ther 2001 12: 671–684

    Article  CAS  PubMed  Google Scholar 

  36. Lee SS, Eisenlohr LC, McCue PA, Mastrangelo MJ, Lattime EC . Intravesical gene therapy: vaccinia virus recombinants transfect murine bladder tumors and urothelium Proc Am Assoc Cancer Res 1993 34: 337

    Google Scholar 

  37. Lee SS, Eisenlohr LC, McCue PA, Mastrangelo MJ, Lattime EC . Intravesical gene therapy: in-vivo gene transfer using vaccinia vectors Cancer Res 1994 54: 3325–3328

    CAS  PubMed  Google Scholar 

  38. Lattime EC, Maguire HCJ, McCue PA et al. Infection of human melanoma cells by intratumoral vaccinia J Invest Dermatol 1994 102: 568

    Google Scholar 

  39. Mastrangelo MJ, Maguire HC Jr, McCue PA . A pilot study demonstrating the feasibility of using intratumoral vaccinia injections as a vector for gene transfer Vaccine Res 1995 4: 55–69

    Google Scholar 

  40. Gomella LG, Mastrangelo MJ, Eisenlohr LC, McCue PA, Lee SS, Lattime EC . Localized gene therapy for prostate cancer: strategies for intraprostatic cytokine gene transfection using vaccinia virus vectors J Urol 1995 153: 308A

    Article  Google Scholar 

  41. Lattime E, Eisenlohr L, Gomella L, Mastrangelo M . The use of vaccinia virus vectors for immunotherapy via in-situ tumor transfection In: Lattime E, Gerson S, eds Gene Therapy of Cancer: Translational Approaches from Preclinical Studies to Clinical Implementation San Diego: Academic Press 1999 125–137

    Google Scholar 

  42. Lee SS, Eisenlohr LC, McCue PA, Mastrangelo MJ, Fink E, Lattime EC . In-vivo gene therapy of murine tumors using recombinant vaccinia virus encoding GM-CSF Proc Am Assoc Cancer Res 1995 36: 248

    Google Scholar 

  43. Lee SS, Eisenlohr LC, McCue PA, Mastrangelo MJ, Lattime EC . Vaccinia virus vector mediated cytokine gene transfer for in vivo tumor immunotherapy Proc Am Assoc Cancer Res 1994 35: 514

    Google Scholar 

  44. Ramshaw IA, Ramsay AJ, Karupiah G, Rolph MS, Mahalingam S, Ruby JC . Cytokines and immunity to viral infections Immunol Rev 1997 159: 119–135

    Article  CAS  PubMed  Google Scholar 

  45. Lattime EC, Maguire HCJ, McCue PA et al. Gene therapy using vaccinia vectors: repeated intratumoral injections result in tumor infection in the presence of anti-vaccinia immunity Proc Am Soc Clin Oncol 1994 13: 397

    Google Scholar 

  46. Ostrand-Rosenberg S, Pulaski BA, Armstrong TD, Clements VK . Immunotherapy of established tumor with MHC class II and B7.1 cell–based tumor vaccines Adv Exp Med Biol 1998 451: 259–264

    Article  CAS  PubMed  Google Scholar 

  47. Mastrangelo MJ, Maguire HC Jr, Eisenlohr LC . Intratumoral recombinant GM-CSF–encoding virus as gene therapy in patients with cutaneous melanoma Cancer Gene Ther 1999 6: 409–422

    Article  CAS  PubMed  Google Scholar 

  48. Gomella LG, Mastrangelo MJ, McCue PA, Maguire HC, Mulholland SG, Lattime EC . Phase I study of intravesical vaccinia virus as a vector for gene therapy of bladder cancer J Urol 2001 166: 1291–1295

    Article  CAS  PubMed  Google Scholar 

  49. Mukherjee S, Haenel T, Himbeck R et al. Replication-restricted vaccinia as a cytokine gene therapy vector in cancer: persistent transgene expression despite antibody generation Cancer Gene Ther 2000 7: 663–670

    Article  CAS  PubMed  Google Scholar 

  50. Robinson BW, Mukherjee SA, Davidson A et al. Cytokine gene therapy or infusion as treatment for solid human cancer J Immunother 1998 21: 211–217

    Article  CAS  PubMed  Google Scholar 

  51. Kaufman HL, Conkright W, Divito J Jr et al. A phase I trial of intra lesional RV-B7.1 vaccine in the treatment of malignant melanoma Hum Gene Ther 2000 11: 1065–1082

    Article  CAS  PubMed  Google Scholar 

  52. Kaufman HL, DeRaffele G, Divito J et al. A phase I trial of intralesional rV-Tricom vaccine in the treatment of malignant melanoma Hum Gene Ther 2001 12: 1459–1480

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by ACS Grants IM-742 and EDT-78842; USPHS Grants CA-42908, CA-55322, CA-69253, CA-74543; and the Nat Pincus Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmund C Lattime.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mastrangelo, M., Lattime, E. Virotherapy clinical trials for regional disease: In situ immune modulation using recombinant poxvirus vectors. Cancer Gene Ther 9, 1013–1021 (2002). https://doi.org/10.1038/sj.cgt.7700538

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700538

Keywords

This article is cited by

Search

Quick links