Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

IL-12 conditioning improves retrovirally mediated transduction efficiency of CD8+ T cells

Abstract

The ability to genetically modify T cells is a critical component to many immunotherapeutic strategies and research studies. However, the success of these approaches is often limited by transduction efficiency. As retroviral vectors require cell division for integration, transduction efficiency is dependent on the appropriate activation and culture conditions for T cells. Naive CD8+ T cells, which are quiescent, must be first activated to induce cell division to allow genetic modification. To optimize this process, we activated mouse T cells with a panel of different cytokines, including interleukin-2 (IL-2), IL-4, IL-6, IL-7, IL-12, IL-15 and IL-23, known to act on T cells. After activation, cytokines were removed, and activated T cells were retrovirally transduced. We found that IL-12 preconditioning of mouse T cells greatly enhanced transduction efficiency, while preserving function and expansion potential. We also observed a similar transduction-enhancing effect of IL-12 preconditioning on human T cells. These findings provide a simple method to improve the transduction efficiencies of CD8+ T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rossi JJ, June CH, Kohn DB . Genetic therapies against HIV. Nat Biotechnol 2007; 25: 1444–1454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kerkar SP . Model t' cells: a time-tested vehicle for gene therapy. Front Immunol 2013; 4: 304.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wieczorek A, Uharek L . Genetically modified T cells for the treatment of malignant disease. Transfus Med Chemother 2013; 40: 388–402.

    Article  Google Scholar 

  4. June CH, Maus MV, Plesa G, Johnson LA, Zhao Y, Levine BL, et al. Engineered T cells for cancer therapy. Cancer Immunol Immunother 2014; 63: 969–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leuci V, Mesiano G, Gammaitoni L, Aglietta M, Sangiolo D . Genetically redirected T lymphocytes for adoptive immunotherapy of solid tumors. Curr Gene Ther 2014; 14: 52–62.

    Article  CAS  PubMed  Google Scholar 

  6. Singh H, Huls H, Kebriaei P, Cooper LJ . A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19. Immunol Rev 2014; 257: 181–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jensen MC, Riddell SR . Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev 2014; 257: 127–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Restifo NP, Dudley ME, Rosenberg SA . Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 2012; 12: 269–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kalos M . Muscle CARs and TcRs: turbo-charged technologies for the (T cell) masses. Cancer Immunol Immunother 2012; 61: 127–135.

    Article  CAS  PubMed  Google Scholar 

  10. Eshhar Z . Adoptive cancer immunotherapy using genetically engineered designer T-cells: first steps into the clinic. Curr Opin Mol Ther 2010; 12: 55–63.

    CAS  PubMed  Google Scholar 

  11. McKee MD, Fichera A, Nishimura MI . T cell immunotherapy. Front Biosci 2007; 12: 919–932.

    Article  CAS  PubMed  Google Scholar 

  12. Maus MV, Fraietta JA, Levine BL, Kalos M, Zhao Y, June CH . Adoptive immunotherapy for cancer or viruses. Annu Rev Immunol 2014; 32: 189–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kershaw MH, Westwood JA, Slaney CY, Darcy PK . Clinical application of genetically modified T cells in cancer therapy. Clin Transl Immunol 2014; 3: e16.

    Article  Google Scholar 

  14. Nelson MH, Paulos CM . Novel immunotherapies for hematologic malignancies. Immunol Rev 2015; 263: 90–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roe T, Reynolds TC, Yu G, Brown PO . Integration of murine leukemia virus DNA depends on mitosis. EMBO J 1993; 12: 2099–2108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harel J, Rassart E, Jolicoeur P . Cell cycle dependence of synthesis of unintegrated viral DNA in mouse cells newly infected with murine leukemia virus. Virology 1981; 110: 202–207.

    Article  CAS  PubMed  Google Scholar 

  17. Rubinstein MP, Kadima AN, Salem ML, Nguyen CL, Gillanders WE, Nishimura MI et al, Transfer of TCR genes into mature T cells is accompanied by the maintenance of parental T cell avidity. J Immunol 2003; 170: 1209–1217.

    Article  CAS  PubMed  Google Scholar 

  18. Crossland KD, Lee VK, Chen W, Riddell SR, Greenberg PD, Cheever MA . T cells from tumor-immune mice nonspecifically expanded in vitro with anti-CD3 plus IL-2 retain specific function in vitro and can eradicate disseminated leukemia in vivo. J Immunol 1991; 146: 4414–4420.

    CAS  PubMed  Google Scholar 

  19. Rubinstein MP, Cloud CA, Garrett TE, Moore CJ, Schwartz KM, Johnson CB et al, Ex vivo interleukin-12-priming during CD8(+) T cell activation dramatically improves adoptive T cell transfer antitumor efficacy in a lymphodepleted host. J Am Coll Surg 2012; 214: 700–707; discussion 707–708.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Diaz-Montero CM, El Naggar S, Al Khami A, El Naggar R, Montero AJ, Cole DJ, et al. Priming of naive CD8+ T cells in the presence of IL-12 selectively enhances the survival of CD8+CD62Lhi cells and results in superior anti-tumor activity in a tolerogenic murine model. Cancer Immunol Immunother 2008; 57: 563–572.

    Article  CAS  PubMed  Google Scholar 

  21. Valenzuela JO, Hammerbeck CD, Mescher MF . Cutting edge: Bcl-3 up-regulation by signal 3 cytokine (IL-12) prolongs survival of antigen-activated CD8 T cells. J Immunol 2005; 174: 600–604.

    Article  CAS  PubMed  Google Scholar 

  22. Chang J, Cho JH, Lee SW, Choi SY, Ha SJ, Sung YC . IL-12 priming during in vitro antigenic stimulation changes properties of CD8 T cells and increases generation of effector and memory cells. J Immunol 2004; 172: 2818–2826.

    Article  CAS  PubMed  Google Scholar 

  23. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH et al, A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6: 1133–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6: 1123–1132.

    Article  CAS  PubMed  Google Scholar 

  25. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B et al, Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000; 13: 715–725.

    Article  CAS  PubMed  Google Scholar 

  26. Gagnon J, Ramanathan S, Leblanc C, Cloutier A, McDonald PP, Ilangumaran S . IL-6, in synergy with IL-7 or IL-15, stimulates TCR-independent proliferation and functional differentiation of CD8+ T lymphocytes. J Immunol 2008; 180: 7958–7968.

    Article  CAS  PubMed  Google Scholar 

  27. Sepulveda H, Cerwenka A, Morgan T, Dutton RW . CD28, IL-2-independent costimulatory pathways for CD8 T lymphocyte activation. J Immunol 1999; 163: 1133–1142.

    CAS  PubMed  Google Scholar 

  28. Teague TK, Marrack P, Kappler JW, Vella AT . IL-6 rescues resting mouse T cells from apoptosis. J Immunol 1997; 158: 5791–5796.

    CAS  PubMed  Google Scholar 

  29. Overwijk WW, Schluns KS . Functions of gammaC cytokines in immune homeostasis: current and potential clinical applications. Clin Immunol 2009; 132: 153–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma A, Koka R, Burkett P . Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol 2006; 24: 657–679.

    Article  CAS  PubMed  Google Scholar 

  31. Marrack P, Mitchell T, Bender J, Hildeman D, Kedl R, Teague K et al, T-cell survival. Immunol Rev 1998; 165: 279–285.

    Article  CAS  PubMed  Google Scholar 

  32. Koya RC, Mok S, Comin-Anduix B, Chodon T, Radu CG, Nishimura MI et al, Kinetic phases of distribution and tumor targeting by T cell receptor engineered lymphocytes inducing robust antitumor responses. Proc Natl Acad Sci USA 2010; 107: 14286–14291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH . A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000; 100: 655–669.

    Article  CAS  PubMed  Google Scholar 

  34. Kochenderfer JN, Yu Z, Frasheri D, Restifo NP, Rosenberg SA . Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood 2010; 116: 3875–3886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Norell H, Zhang Y, McCracken J, Martins da Palma T, Lesher A, Liu Y, et al. CD34-based enrichment of genetically engineered human T cells for clinical use results in dramatically enhanced tumor targeting. Cancer Immunol Immunother 2010; 59: 851–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zheng Z, Chinnasamy N, Morgan RA . Protein L: a novel reagent for the detection of chimeric antigen receptor (CAR) expression by flow cytometry. J Transl Med 2012; 10: 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Valenzuela J, Schmidt C, Mescher M . The roles of IL-12 in providing a third signal for clonal expansion of naive CD8 T cells. J Immunol 2002; 169: 6842–6849.

    Article  CAS  PubMed  Google Scholar 

  38. Li Q, Eppolito C, Odunsi K, Shrikant PA . IL-12-programmed long-term CD8+ T cell responses require STAT4. J Immunol 2006; 177: 7618–7625.

    Article  CAS  PubMed  Google Scholar 

  39. Albritton LM, Tseng L, Scadden D, Cunningham JM . A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell 1989; 57: 659–666.

    Article  CAS  PubMed  Google Scholar 

  40. Kim JW, Closs EI, Albritton LM, Cunningham JM . Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 1991; 352: 725–728.

    Article  CAS  PubMed  Google Scholar 

  41. Wang H, Kavanaugh MP, North RA, Kabat D . Cell-surface receptor for ecotropic murine retroviruses is a basic amino-acid transporter. Nature 1991; 352: 729–731.

    Article  CAS  PubMed  Google Scholar 

  42. Agarwal P, Raghavan A, Nandiwada SL, Curtsinger JM, Bohjanen PR, Mueller DL et al, Gene regulation and chromatin remodeling by IL-12 and type I IFN in programming for CD8 T cell effector function and memory. J Immunol 2009; 183: 1695–1704.

    Article  CAS  PubMed  Google Scholar 

  43. Chowdhury FZ, Ramos HJ, Davis LS, Forman J, Farrar JD . IL-12 selectively programs effector pathways that are stably expressed in human CD8+ effector memory T cells in vivo. Blood 2011; 118: 3890–3900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Curtsinger JM, Lins DC, Johnson CM, Mescher MF . Signal 3 tolerant CD8 T cells degranulate in response to antigen but lack granzyme B to mediate cytolysis. J Immunol 2005; 175: 4392–4399.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dan Neitzke for critical review of this manuscript. We thank Gina Scurti (Loyola University) for expert technical advice in culturing human T cells. Grant funding for this project was provided by P01CA54778-01 from the National Institutes of Health and the National Cancer Institute. This work was also supported in part by the Cell Evaluation and Therapy Shared Resource, Hollings Cancer Center and Medical University of South Carolina (P30CA138313). We also acknowledge the NIH Tetramer Core Facility (Contract No. HHSN272201300006C) for provision of the tetramer used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M P Rubinstein.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrijauskaite, K., Suriano, S., Cloud, C. et al. IL-12 conditioning improves retrovirally mediated transduction efficiency of CD8+ T cells. Cancer Gene Ther 22, 360–367 (2015). https://doi.org/10.1038/cgt.2015.28

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2015.28

This article is cited by

Search

Quick links