Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene therapy for radioprotection

Abstract

Radiation therapy is a critical component of cancer treatment with over half of patients receiving radiation during their treatment. Despite advances in image-guided therapy and dose fractionation, patients receiving radiation therapy are still at risk for side effects due to off-target radiation damage of normal tissues. To reduce normal tissue damage, researchers have sought radioprotectors, which are agents capable of protecting tissue against radiation by preventing radiation damage from occurring or by decreasing cell death in the presence of radiation damage. Although much early research focused on small-molecule radioprotectors, there has been a growing interest in gene therapy for radioprotection. The amenability of gene therapy vectors to targeting, as well as the flexibility of gene therapy to accomplish ablation or augmentation of biologically relevant genes, makes gene therapy an excellent strategy for radioprotection. Future improvements to vector targeting and delivery should greatly enhance radioprotection through gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lawrence TS, Ten Haken RK, Giaccia A . Principles of radiation oncology. In: DeVita VT Jr, Lawrence TS, Rosenberg SA (eds). Cancer: Principles and Practice of Oncology, 8th edn. Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2008.

    Google Scholar 

  2. Hall E, Giaccia A . Radiobiology for the Radiologist, 6th edn. Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006.

    Google Scholar 

  3. Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB . Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 2010; 15: 360–371.

    PubMed  PubMed Central  Google Scholar 

  4. Pensado A, Seijo B, Sanchez A . Current strategies for DNA therapy based on lipid nanocarriers. Expert Opin Drug Deliv 2014; 11: 1721–1731.

    CAS  PubMed  Google Scholar 

  5. Kaliberov SA, Kaliberova LN, Hong Lu Z, Preuss MA, Barnes JA, Stockard CR et al. Retargeting of gene expression using endothelium specific hexon modified adenoviral vector. Virology 2013; 447: 312–325.

    CAS  PubMed  Google Scholar 

  6. Kaliberov SA, Kaliberova LN, Buggio M, Tremblay JM, Shoemaker CB, Curiel DT . Adenoviral targeting using genetically incorporated camelid single variable domains. Lab Invest 2014; 94: 893–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Akashi M, Hachiya M, Paquette R, Osawa Y, Shimizu S, Suzuki G . Irradiation increases manganese superoxide dismutase mRNA levels in human fibroblasts. J Biol Chem 1995; 270: 15864–15869.

    CAS  PubMed  Google Scholar 

  8. Epperly M, Gretton J, Sikora C, Jefferson M, Bernarding M, Nie S et al. Mitochondrial localization of superoxide dismutase is required for decreasing radiation-induced cellular damage. Radiat Res 2003; 160: 568–578.

    CAS  PubMed  Google Scholar 

  9. Kang S, Rabbani Z, Folz R, Golson M, Huang H, Yu D et al. Overexpression of extracellular superoxide dismutase protects mice from radiation-induced lung injury. Int J Radiat Oncol Biol Phys 2003; 57: 1056–1066.

    CAS  PubMed  Google Scholar 

  10. Greenberger J, Epperly M . Antioxidant gene therapeutic approaches to normal tissue radioprotection and tumor radiosensitization. In Vivo 2007; 21: 141–146.

    CAS  PubMed  Google Scholar 

  11. Dhar S, St. Clair D . Manganese superoxide dismutase regulation and cancer. Free Radic Biol Med 2012; 52: 2209–2222.

    CAS  PubMed  Google Scholar 

  12. Epperly M, Bray J, Krager S, Berry L, Gooding W, Engelhardt J et al. Intratracheal injection of adenovirus containing the human MnSOD transgene protects athymic nude mice from irradiation-induced organizing alveolitis. Int J Rad Onc Biol Phys 1999; 43: 169–181.

    CAS  Google Scholar 

  13. Guo H, Wolfe D, Epperly M, Huang S, Liu K, Glorioso J et al. Gene transfer of human manganese superoxide dismutase protects small intestinal villi from radiation injury. J Gastrointest Surg 2003; 7: 229–236.

    PubMed  Google Scholar 

  14. Epperly M, Bray J, Kraeger S, Zwacka R, Engelhardt J, Travis E et al. Prevention of late effects of irradiation lung damage by manganese superoxide dismutase gene therapy. Gene Therapy 1998; 5: 196–208.

    CAS  PubMed  Google Scholar 

  15. Kanai A, Zeidel M, Lavelle J, Greenberger J, Birder L, Groat W et al. Manganese superoxide dismutase gene therapy protects against irradiation-induced cystitis. Am J Physiol Renal Physiol 2002; 283: F1304–F1312.

    CAS  PubMed  Google Scholar 

  16. Carpenter M, Epperly M, Agarwal A, Nie S, Hricisak L, Niu Y et al. Inhalation delivery of manganese superoxide dismutase-plasmid/liposomes protects the murine lung from irradiation damage. Gene Therapy 2005; 12: 685–693.

    CAS  PubMed  Google Scholar 

  17. Epperly M, Smith T, Zhang X, Goff J, Franicola D, Greenberger B et al. Modulation of in utero total body irradiation induced newborn mouse growth retardation by maternal manganese superoxide dismutase-plasmid liposome (MnSOD-PL) gene therapy. Gene Therapy 2011; 18: 579–583.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang X, Epperly M, Kay M, Chen Z, Dixon T, Franicola D et al. Radioprotection in vitro and in vivo by minicircle plasmid carrying the human manganese superoxide dismutase transgene. Hum Gene Ther 2008; 19: 820–826.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Epperly M, Travis E, Sikora C, Greenberger J . Magnesium superoxide dismutase (MnSOD) plasmid/liposome pulmonary radioprotective gene therapy: modulation of irradiation-induced mRNA for IL-1, TNF-α, and TGF-β correlates with delay of organizing alveolitis/fibrosis. Biol Blood Marrow Transplant 1999; 5: 204–214.

    CAS  PubMed  Google Scholar 

  20. Stickle R, Epperly M, Klein E, Bray J, Greenberger J . Prevention of irradiation-induced esophagitis by plasmid/liposome delivery of the human manganese superoxide dismutase transgene. Radiat Oncol Invest 1999; 7: 204–217.

    CAS  Google Scholar 

  21. Eppery M, Kagan V, Sikora C, Gretton J, Defilippi S, Bar-Sagi D et al. Manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) administration protects mice from esophagitis associated with fractionated radiation. Int J Cancer 2001; 96: 221–231.

    Google Scholar 

  22. Rajagopalan M, Stone B, Rwigema J, Salimi U, Epperly M, Goff J et al. Intraesophageal manganese superoxide dismutase-plasmid liposomes ameliorates novel total-body and thoracic radiation sensitivity of NOS1−/− mice. Radiat Res 2010; 174: 297–312.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Epperly M, Wang H, Jones J, Dixon T, Montesinos C, Greenberger J . Antioxidant-chemoprevention diet ameliorates late effects of total-body irradiation and supplements radioprotection by MnSOD-plasmid liposome administration. Radiat Res 2011; 175: 759–765.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Epperly M, Carpenter M, Agarwal A, Mitra P, Nie S, Greenberger J . Intraoral manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) radioprotective gene therapy decreases ionizing irradiation-induced murine mucosal cell cycling and apoptosis. In Vivo 2004; 18: 401–410.

    CAS  PubMed  Google Scholar 

  25. Epperly M, Wegner R, Kanai A, Kagan V, Greenberger E, Nie S et al. Effects of MnSOD-plasmid liposome gene therapy on antioxidant levels in irradiated murine oral cavity orthotopic tumors. Radiat Res 2007; 167: 289–297.

    CAS  PubMed  Google Scholar 

  26. Epperly M, Defilippi S, Sikora C, Gretton J, Kalend A, Greenberger J . Intratracheal injection of manganese superoxide dismutase (MnSOD) plasmid/liposomes protects normal lung but not orthotopic tumors from irradiation. Gene Therapy 2000; 7: 1011–1018.

    CAS  PubMed  Google Scholar 

  27. Zwacka R, Dudus L, Epperly M, Greenberger J, Engelhardt J . Redox gene therapy protects human IB-3 lung epithelial cells against ionizing radiation-induced apoptosis. Hum Gene Ther 1998; 9: 1381–1386.

    CAS  PubMed  Google Scholar 

  28. Epperly M, Sikora C, DeFilippi S, Gretton J, Bar-Sagi D, Archer H et al. Pulmonary irradiation-induced expression of VCAM-1 and ICAM-1 is decreased by manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) gene therapy. Biol Blood Marrow Transplant 2002; 8: 175–187.

    CAS  PubMed  Google Scholar 

  29. Niu Y, Shen H, Epperly M, Zhang X, Nie S, Cao S et al. Protection of esophageal multi-lineage progenitors of squamous epithelium (stem cells) from ionizing irradiation by manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) gene therapy. In Vivo 2005; 19: 965–974.

    CAS  PubMed  Google Scholar 

  30. Niu Y, Epperly M, Shen H, Smith T, Wang H, Greenberger J . Intraesophageal MnSOD-plasmid liposome enhances engraftment and self-renewal of bone marrow derived progenitors of esophageal squamous epithelium. Gene Therapy 2008; 15: 347–356.

    CAS  PubMed  Google Scholar 

  31. Epperly M, Tyurina Y, Nie S, Niu Y, Zhang X, Kagan V et al. MnSOD-plasmid liposome gene therapy decreases ionizing irradiation-induced lipid peroxidation of the esophagus. In Vivo 2005; 19: 997–1004.

    CAS  PubMed  Google Scholar 

  32. Niu Y, Wang H, Wiktor-Brown D, Rugo R, Shen H, Huq M et al. Irradiated esophageal cells are protected from radiation-induced recombination by MnSOD gene therapy. Radiat Res 2010; 173: 453–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Epperly M, Bernarding M, Gretton J, Jefferson M, Nie S, Greenberger J . Overexpression of the transgene for manganese superoxide dismutase (MnSOD) in 32D cl 3 cells prevents apoptosis induction by TNFα, IL-3 withdrawal, and ionizing radiation. Exp Hematol 2003; 31: 465–474.

    CAS  PubMed  Google Scholar 

  34. Epperly M, Smith T, Wang H, Schlesselman J, Franicola D, Greenberger J . Modulation of total body irradiation induced life shortening by systemic intravenous MnSOD-plasmid liposome gene therapy. Radiat Res 2008; 170: 437–443.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Epperly M, Melendez J, Zhang X, Nie S, Pearce L, Peterson J et al. Mitochondrial targeting of a catalase transgene product by plasmid liposomes increases radioresistance in vitro and in vivo. Radiat Res 2009; 171: 588–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Miao W, XuFeng R, Park M, Gu H, Hu L, Kang J et al. Hematopoietic stem cell regeneration enhanced by ectopic expression of ROS-detoxifying enzymes in transplant mice. Mol Therapy 2013; 21: 423–432.

    CAS  Google Scholar 

  37. Clevers H, Nusse R . Wnt/β-catenin signaling and disease. Cell 2012; 149: 1192–1205.

    CAS  PubMed  Google Scholar 

  38. Inagaki-Ohara K, Yada S, Takamura N, Reaves M, Yu X, Liu E et al. P53-dependent radiation-induced crypt intestinal epithelial cells apoptosis is mediated in part through TNF-TNFR1 system. Oncogene 2001; 20: 812–818.

    CAS  PubMed  Google Scholar 

  39. Gregorieff A, Clevers H . Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 2005; 19: 877–890.

    CAS  PubMed  Google Scholar 

  40. Kim KA, Zhao J, Andarmani S, Kakitani M, Oshima T, Binnerts ME et al. R-Spondin proteins: a novel link to beta-catenin activation. Cell Cycle 2005; 5: 23–26.

    Google Scholar 

  41. Nam JS, Turcotte TJ, Smith PF, Choi S, Yoon JK . Mouse cristin/R-spondin family proteins are novel ligands for the Frizzled 8 and LRP6 receptors and activate beta-catenin dependent gene expression. J Biol Chem 2006; 281: 13247–13257.

    CAS  PubMed  Google Scholar 

  42. Kim KA, Kakitani M, Zhao J, Oshima T, Tang T, Binnerts M et al. Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science 2005; 309: 1256–1259.

    CAS  PubMed  Google Scholar 

  43. Zhao J, de Vera J, Narushima S, Beck EX, Palencia S, Shinkawa P et al. R-spondin1, a novel intestinotrophic mitogen, ameliorates experimental colitis in mice. Gastroenterology 2007; 132: 1331–1343.

    CAS  PubMed  Google Scholar 

  44. Zhao J, Kim KA, de Vera J, Palencia S, Wagle M, Abo A . R-Spondin1 protects mice from chemotherapy or radiation-induced oral mucositis through the canonical Wnt/β-catenin pathway. Proc Natl Acad Sci USA 2009; 106: 2331–2336.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bhanja P, Saha S, Kabarriti R, Liu L, Roy-Chowdhury N, Roy-Chowdhury J et al. Protective role of R-spondin1, an intestinal stem cell growth factor, against radiation-induced gastrointestinal syndrome in mice. PLoS One 009; 4: e8014.

    Google Scholar 

  46. Feder ME, Hofmann GE . Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 1999; 61: 243–282.

    CAS  PubMed  Google Scholar 

  47. Lee HJ, Lee YJ, Kwon HC, Bae S, Kim SH, Min JJ et al. Radioprotective effect of heat shock protein 25 on submandibular glands of rats. Am J Pathol 2006; 169: 1601–1611.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee HJ, Kwon HC, Chung HY, Lee YJ, Lee YS . Recovery from radiation-induced bone marrow damage by HSP25 through Tie2 signaling. Int J Radiat Oncol Biol Phys 2012; 84: e85–e93.

    CAS  PubMed  Google Scholar 

  49. Brizel DM, Overgaard J . Does amifostine have a role in chemoradiation treatment? Lancet Oncol 2003; 4: 378–381.

    CAS  PubMed  Google Scholar 

  50. Abok K, Brunk U, Jung B, Ericsson J . Morphologic and histochemical studies on the differing radiosensitivity of ductular and acinar cells of the rat submandibular gland. Virchows Arch B 1984; 45: 443–460.

    CAS  PubMed  Google Scholar 

  51. Takagi K, Yamaguchi K, Sakurai T, Asari T, Hashimoto K, Terakawa S . Secretion of saliva in X-irradiated rat submandibular glands. Radiat Res 2003; 159: 351–360.

    CAS  PubMed  Google Scholar 

  52. Park SH, Lee SJ, Chung HY, Kim TH, Cho CK, Yoo SY et al. Inducible heat-shock protein 70 is involved in the radioadaptive response. Radiat Res 2000; 153: 318–326.

    CAS  PubMed  Google Scholar 

  53. Yi MJ, Park SH, Cho HN, Yong Chung H, Kim JI, Cho CK et al. Heat shock protein 25 (Hspb1) regulates manganese superoxide dismutase through activation of Nfkb (NF-kappaB). Radiat Res 2002; 158: 641–649.

    CAS  PubMed  Google Scholar 

  54. Lee YJ, Cho HN, Jeoung DI, Soh JW, Cho CK, Bae S et al. HSP25 overexpression attenuates oxidative stress-induced apoptosis: roles of ERK1/2 signaling and manganese superoxide dismutase. Free Radic Biol Med 2004; 36: 429–444.

    CAS  PubMed  Google Scholar 

  55. Lee YJ, Lee DH, Cho CK, Bae S, Jhon GJ, Lee SJ et al. HSP25 inhibits protein kinase C delta-mediated cell death through direct interaction. J Biol Chem 2005; 280: 18108–18119.

    CAS  PubMed  Google Scholar 

  56. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118: 149–161.

    CAS  PubMed  Google Scholar 

  57. Gottesman MM, Pastan I . Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993; 62: 385–427.

    CAS  PubMed  Google Scholar 

  58. Hesdorffer C, Ayello J, Ward M, Kaubisch A, Vahdat L, Balmaceda C et al. Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation. J Clin Oncol 1998; 16: 165–172.

    CAS  PubMed  Google Scholar 

  59. Staley E, Yarbrough V, Schoeb T, Daft J, Tanner S, Steverson D Jr et al. Murine P-glycoprotein deficiency alters intestinal injury repair and blunt lipopolysaccharide-induced radioprotection. Radiat Res 2012; 178: 207–216.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Maier P, Fleckenstein K, Li L, Laufs S, Zeller W, Baum C et al. Overexpression of MDR1 using a retroviral vector differentially regulates genes involved in detoxification and apoptosis and confers radioprotection. Radiat Res 2006; 166: 463–473.

    CAS  PubMed  Google Scholar 

  61. Maier P, Herskind C, Fleckenstein K, Spier I, Laufs S, Jens Zeller W et al. MDR1 gene transfer using a lentiviral SIN vector confers radioprotection to human CD34+ hematopoietic progenitor cells. Radiat Res 2008; 169: 301–310.

    CAS  PubMed  Google Scholar 

  62. Inoue A, Seidel MG, Wu W, Kamizono S, Ferrando AA, Bronson RT et al. Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell 2002; 2: 279–288.

    PubMed  Google Scholar 

  63. Maier P, Herskind C, Barzan D, Zeller WJ, Wenz F . SNAI2 as a novel radioprotector of normal tissue by gene transfer using a lentiviral bicistronic SIN vector. Radiat Res 2010; 173: 612–619.

    CAS  PubMed  Google Scholar 

  64. Barrallo-Gimeno A, Nieto MA . The snail genes as inducers of cell movement and survival: implications in development and cancer. Development 2005; 132: 3151–3161.

    CAS  PubMed  Google Scholar 

  65. Metcalf D . Hematopoietic cytokines. Blood 2008; 111: 485–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lantz CS, Boesiger J, Song CH, Mach N, Kobayashi T, Mulligan RC et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 1998; 392: 90–93.

    CAS  PubMed  Google Scholar 

  67. Dahl C, Hoffmann HJ, Saito H, Schiotz PO . Human mast cells express receptors for IL-3, IL-5 and GM–CSF: a partial map of receptors on human mast cells cultured in vitro. Allergy 2004; 59: 1087–1096.

    CAS  PubMed  Google Scholar 

  68. Dentelli P, Del Sorbo L, Rosso A, Molinar A, Garbarino G, Camussi G et al. Human IL-3 stimulates endothelial cell motility and promotes in vivo new vessel formation. J Immunol 1999; 163: 2151–2159.

    CAS  PubMed  Google Scholar 

  69. Eder M, Geissler G, Ganser A . IL-3 in the clinic. Stem Cells 1997; 15: 327–333.

    CAS  PubMed  Google Scholar 

  70. Chapel A, Deas O, Bensidhoum M, Francois S, Mouiseddine M, Ponçet P et al. In vivo gene targeting of IL-3 into immature hematopoietic cells through CD117 receptor mediated antibody gene delivery. Genet Vaccines Ther 2004; 2: 16.

    PubMed  PubMed Central  Google Scholar 

  71. Nakamura T . Structure and function of hepatocyte growth factor. Prog Growth Factor Res 1991; 3: 67–85.

    CAS  PubMed  Google Scholar 

  72. Zarnegar R, Michalopoulos GK . The many faces of hepatocyte growth factor: from hepatopoiesis to hematopoiesis. J Cell Biol 1995; 129: 1177–1180.

    CAS  PubMed  Google Scholar 

  73. Bussolino F, Di Renzo MF, Ziche M, Bocchietto E, Olivero M, Naldini L et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 1992; 119: 629–641.

    CAS  PubMed  Google Scholar 

  74. Hu S, Chen Y, Li L, Chen J, Wu B, Zhou X et al. Effects of adenovirus-mediated delivery of the human hepatocyte growth factor gene in experimental radiation-induced heart disease. Int J Radiat Oncol Biol Phys 2005; 75: 1537–1544.

    Google Scholar 

  75. Li Q, Sun H, Xiao F, Wang X, Yang Y, Liu Y et al. Protection against radiation-induced hematopoietic damage in bone marrow by hepatocyte growth factor gene transfer. Int J Radiat Biol 2014; 90: 36–44.

    CAS  PubMed  Google Scholar 

  76. Gao CF, Vade Woude GF . HGF/SF-Met signaling in tumor progression. Cell Res 2005; 15: 49–51.

    PubMed  Google Scholar 

  77. Ribatti D, Vacca A, Rusnati M, Presta M . The discovery of basic fibroblast growth factor/fibroblast growth factor-2 and its role in haematological malignancies. Cytokine Growth Factor Rev 2007; 18: 327–334.

    CAS  PubMed  Google Scholar 

  78. Ferrara N, Gerber H, Lecouter J . The biology of VEGF and its receptors. Nat Med 2003; 9: 669–676.

    CAS  PubMed  Google Scholar 

  79. Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 2001; 293: 293–297.

    CAS  PubMed  Google Scholar 

  80. Cotrim A, Sowers A, Mitchell J, Baum B . Prevention of irradiation-induced salivary hypofunction by microvessel protection in mouse salivary glands. Mol Ther 2007; 15: 2101–2106.

    CAS  PubMed  Google Scholar 

  81. Finch PW, Rubin JS . Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv Cancer Res 2004; 91: 69–136.

    CAS  PubMed  Google Scholar 

  82. Shyamsundar M, McAuley DF, Ingram RJ, Gibson DS, O’Kane D, McKeown ST . Keratinocyte growth-factor promotes epithelial survival and resolution in a human model of lung injury. Am J Respir Crit Care Med 2014; 189: 1520–1529.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Finch PW, Mark Cross LJ, McAuley DF, Farrell CL . Palifermin for the protection and regeneration of epithelial tissues following injury: new findings in basic research and pre-clinical models. J Cell Mol Med 2013; 17: 1065–1087.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zheng C, Vitolo JM, Zhang W, Mineshiba F, Chiorini JA, Baum BJ . Etended transgene expression from a nonintegratng adenoviral vector containing retroviral elements. Mol Ther 2008; 16: 1089–1097.

    CAS  PubMed  Google Scholar 

  85. Zheng C, Cotrim AP, Sunshine AN, Sugito T, Liu L, Sowers A et al. Prevention of radiation-induced oral mucositis after adenoviral vector-mediated transfer of the keratinocyte growth factor cDNA to mouse submandibular glands. Clin Cancer Res 2009; 15: 4641–4648.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zheng C, Cotrim AP, Rowzee A, Swaim W, Sowers A, Mitchell JB . Prevention of radiation-induced salivary hypofunction following hKGF gene delivery to murine submandibular glands. Clin Cancer Res 2011; 17: 2842–2851.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Finch PW, Rubin JS . Keratinocyte growth factor expression and activity in cancer: implications for use in patients with solid tumors. J Natl Cancer Inst 2006; 98: 812–824.

    CAS  PubMed  Google Scholar 

  88. Jelkmann W . Physiology and pharmacology of erythropoietin. Transfus Med Hemother 2013; 40: 302–309.

    PubMed  PubMed Central  Google Scholar 

  89. Gobe GC, Morais C, Vesey DA, Johnson DW . Use of high-dose erythropoietin for repair after injury: a comparison of outcomes in heart and kidney. J Nephropathol 2013; 2: 154165.

    Google Scholar 

  90. Kakavas S, Demestiha T, Vasileiou P, Xanthos T . Erythropoetin as a novel agent with pleiotropic effects against acute lung injury. Eur J Clin Pharmacol 2011; 67: 1–9.

    CAS  PubMed  Google Scholar 

  91. Rocha EM, Cotrim AP, Zheng C, Riveros PP, Baum BJ, Chiorini JA . Recovery of radiation-induced dry eye and corneal damage by pretreatment with adenoviral vector-mediated transfer of erythropoietin to the salivary glands in mice. Hum Gene Ther 2013; 24: 417–423.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y et al. Aquaporin water channels—from atomic structure to clinical medicine. J Physiol 2002; 542: 3–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Baum BJ, Zheng C, Cotrim AP, McCullagh L, Goldsmith CM, Brahim JS et al. Aquaporin-1 gene transfer to correct radiation-induced salivary hypofunction. Handb Exp Pharmacol 2009; 190: 403–418.

    CAS  Google Scholar 

  94. Delporte C, O’Connell BC, He X, Lancaster HE, O’Connell AC, Agre P . Increased fluid secretion after adenoviral-mediated transfer of the aquaporin-1 cDNA to irradiated rat salivary glands. Proc Natl Acad Sci USA 1997; 94: 3268–3273.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Shan Z, Li J, Zheng C, Liu X, Fan Z, Zhang C et al. Increased fluid secretion after adenoviral-mediated transfer of the human aquaporin-1 cDNA to irradiated miniature pig parotid glands. Mol Ther 2005; 11: 444–451.

    CAS  PubMed  Google Scholar 

  96. Zheng C, Goldsmith CM, Mineshiba F, Chiorini JA, Kerr A, Wenk ML et al. Toxicity and biodistribution of a first-generation recombinant adenoviral vector, encoding aquaporin-1, after retroductal delivery to a single rat submandibular gland. Hum Gene Ther 2006; 17: 1122–1133.

    CAS  PubMed  Google Scholar 

  97. Baum BJ, Alevizos I, Zheng C, Cotrim AP, Liu S, McCullagh L et al. Early responses to adenoviral-mediated transfer of the aquaporin-1 cDNA for radiation-induced salivary hypofunction. Proc Natl Acad Sci USA 2012; 109: 19403–19407.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gao R, Yan X, Zheng C, Goldsmith CM, Afione S, Hai B et al. AAV2-mediated transfer of the human aquaporin-1 cDNA restores fluid secretion from irradiated miniature pig parotid glands. Gene Therapy 2011; 18: 38–42.

    PubMed  Google Scholar 

  99. Michelfelder S, Trepel M . Adeno-associated viral vectors and their redirection to cell-type specific receptors. Adv Genet 2009; 67: 29–60.

    CAS  PubMed  Google Scholar 

  100. Beatty M, Curiel DT . Chapter two—adenovirus strategies for tissue-specific targeting. Adv Cancer Res 2012; 115: 39–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Alberti MO, Roth JC, Ismail M, Tsuruta Y, Abraham E, Pereboeva L et al. Derivation of a myeloid cell-binding adenovirus for gene therapy of inflammation. PLoS One 2012; 7: e37812.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Rajendran S, O’Sullivan GC, O’Hanlon D, Tangney M . Adenovirus-mediated transcriptional targeting of colorectal cancer and effects on treatment-resistant hypoxic cells. Clin Colorectal Cancer 2013; 12: 152–162.

    CAS  PubMed  Google Scholar 

  103. Sugio K, Sakurai F, Katayama K, Tashiro K, Matsui H, Kawabata K et al. Enhanced safety profiles of the telomerase-specific replication-competent adenovirus by incorporation of normal cell-specific microRNA-targeted sequences. Clin Cancer Res 2011; 17: 2807–2818.

    CAS  PubMed  Google Scholar 

  104. Corso CD, Ali AN, Diaz R . Radiation-induced tumor neoantigens: imaging and therapeutic implications. Am J Cancer Res 2011; 1: 390–412.

    PubMed  PubMed Central  Google Scholar 

  105. Rashi-Elkeles S, Elkon R, Shavit S, Lerenthal Y, Linhart C, Kupershtein A et al. Transcriptional modulation induced by ionizing radiation: p53 remains a central player. Mol Oncol 2011; 5: 336–348.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Metheetrairut C, Slack FJ . MicroRNAs in the ionizing radiation response and in radiotherapy. Curr Opin Genet Dev 2013; 23: 12–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sun NF, Liu ZA, Huang WB, Tian AL, Hu SY . The research of nanoparticles as gene vector for tumor gene therapy. Crit Rev Oncol Hematol 2014; 89: 352–357.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D T Curiel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Everett, W., Curiel, D. Gene therapy for radioprotection. Cancer Gene Ther 22, 172–180 (2015). https://doi.org/10.1038/cgt.2015.8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2015.8

Search

Quick links