Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Degradation of miR-21 induces apoptosis and inhibits cell proliferation in human hepatocellular carcinoma

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs, 18–25 nucleotides long and have an important role in post-transcriptional regulation of gene. Several aspects of cellular activities such as cell growth, proliferation and differentiation are regulated by miRNAs. In many cancers and malignancies, up- or downregulation of different miRNAs has been reported. In human hepatocellular carcinoma (HCC), upregulation of miR-21 has been reported in human in vitro studies. Here, we made an assessment of the effect of miR-21 degradation on viability and apoptosis of HCC cell line (HepG2) using locked nucleic acid (LNA). At different time points (24, 48, 72 h) after LNA-anti-miR-21 transfection, 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide assay and Annexin/propidium iodide staining were performed. The results show that miR-21 degradation can decrease the viability of cells, mainly by induction of apoptosis and necrosis. These findings suggest that degradation of miR-21 could be used as a novel approach in treatment of HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Griffiths-Jones S, Grocock RJ, Van Dongen S, Bateman A, Enright AJ . miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006; 34 (suppl 1): D140–D144.

    Article  CAS  Google Scholar 

  2. Lee RC, Ambros V . An extensive class of small RNAs in Caenorhabditis elegans. Science 2001; 294: 862–864.

    Article  CAS  Google Scholar 

  3. Tüfekci KU, Meuwissen RLJ, Genç Ş . The role of microRNAs in biological processes. Yousef M (ed). In: miRNomics: MicroRNA Biology and Computational Analysis. Springer: New York, 2014, pp 15–31.

    Book  Google Scholar 

  4. Drakaki A, Iliopoulos D . MicroRNA gene networks in oncogenesis. Curr Genomics 2009; 10: 35.

    Article  CAS  Google Scholar 

  5. Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC, Liang G . Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun 2009; 379: 726–731.

    Article  CAS  Google Scholar 

  6. Fabbri M, Garzon R, Andreeff M, Kantarjian H, Garcia-Manero G, Calin G . MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia 2008; 22: 1095–1105.

    Article  CAS  Google Scholar 

  7. Hu G, Drescher KM, Chen XM . Exosomal miRNAs: biological properties and therapeutic potential. Front Genet 2012; 3: 56.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu H, Qin H, Chen G, Liang M, Rong J, Yao J et al. Comparative expression profiles of microRNA in left and right atrial appendages from patients with rheumatic mitral valve disease exhibiting sinus rhythm or atrial fibrillation. J Transl Med 2014; 12: 90.

    Article  Google Scholar 

  9. Rebane A, Runnel T, Aab A, Maslovskaja J, Rückert B, Zimmermann M et al. MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes. J Allergy Clin Immunol 2014; 134 4: 836–847, e11.

    Article  CAS  Google Scholar 

  10. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA 2011; 61: 69–90.

    PubMed  Google Scholar 

  11. Sanyal AJ, Yoon SK, Lencioni R . The etiology of hepatocellular carcinoma and consequences for treatment. Oncologist 2010; 15 (Suppl 4): 14–22.

    Article  Google Scholar 

  12. Sun J, Lu H, Wang X, Jin H . MicroRNAs in hepatocellular carcinoma: regulation, function, and clinical implications. Sci World J 2013; 2013: 924206.

    Google Scholar 

  13. Bruix J, Sherman M . Management of hepatocellular carcinoma: an update. Hepatology 2011; 53: 1020–1022.

    Article  Google Scholar 

  14. Arzumanyan A, Reis HM, Feitelson MA . Pathogenic mechanisms in HBV-and HCV-associated hepatocellular carcinoma. Nat Rev Cancer 2013; 13: 123–135.

    Article  CAS  Google Scholar 

  15. Aravalli RN, Cressman EN, Steer CJ . Cellular and molecular mechanisms of hepatocellular carcinoma: an update. Arch Toxicol 2013; 87: 227–247.

    Article  CAS  Google Scholar 

  16. Pennelli G, Galuppini F, Barollo S, Cavedon E, Bertazza L, Fassan M et al. The PDCD4/miR-21 pathway in medullary thyroid carcinoma. Hum Pathol 2015; 46: 50–57.

    Article  CAS  Google Scholar 

  17. Asangani I, Rasheed S, Nikolova D, Leupold J, Colburn N, Post S et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008; 27: 2128–2136.

    Article  CAS  Google Scholar 

  18. Maachani UB, Tandle A, Shankavaram U, Kramp T, Camphausen K . Modulation of miR-21 signaling by MPS1 in human glioblastoma. Oncotarget (e-pub ahead of print 15 May 2015).

  19. Croce CM, Fabbri M . Methods and compositions related to MiR-21 & MiR-29a, exosome inhibition, and cancer metastasis. In: US Patent 20,140,323,553, 2014.

  20. Dong C, Ji M, Ji C . microRNAs and their potential target genes in leukemia pathogenesis. Cancer Biol Therapy 2009; 8: 200–205.

    Article  CAS  Google Scholar 

  21. Saunders MA, Lim LP . (micro) Genomic medicine: microRNAs as therapeutics and biomarkers. RNA Biol 2009; 6: 324.

    Article  CAS  Google Scholar 

  22. Trang P, Weidhaas J, Slack F . MicroRNAs as potential cancer therapeutics. Oncogene 2008; 27: S52–S57.

    Article  CAS  Google Scholar 

  23. Ørum H . Locked nucleic acids as MicroRNA therapeutics. MicroRNAs Med 2014: 663–672.

  24. Burdick AD, Sciabola S, Mantena SR, Hollingshead BD, Stanton R, Warneke JA et al. Sequence motifs associated with hepatotoxicity of locked nucleic acid—modified antisense oligonucleotides. Nucleic Acids Res 2014; 42: 4882–4891.

    Article  CAS  Google Scholar 

  25. Ørom UA, Kauppinen S, Lund AH . LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 2006; 372: 137–141.

    Article  Google Scholar 

  26. Di Martino MT, Cantafio MEG, Gullà A, Altomare E, Morelli E, Amodio N et al. In vitro and vivo activity against multiple myeloma cells of a novel locked nucleic acid (LNA)-miR-221 inhibitor. Cancer Res 2014; 74 (19 Suppl): 4789–4789.

    Article  Google Scholar 

  27. El–Serag HB, Rudolph KL . Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132: 2557–2576.

    Article  Google Scholar 

  28. George G, Mittal RD . MicroRNAs: potential biomarkers in cancer. Indian J Clin Biochem 2010; 25: 4–14.

    Article  CAS  Google Scholar 

  29. Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O'Leary JJ, Ruan Q et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 2010; 11: 141–147.

    Article  CAS  Google Scholar 

  30. Chan JA, Krichevsky AM, Kosik KS . MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005; 65: 6029–6033.

    Article  CAS  Google Scholar 

  31. Si M, Zhu S, Wu H, Lu Z, Wu F, Mo Y . miR-21-mediated tumor growth. Oncogene 2007; 26: 2799–2803.

    Article  CAS  Google Scholar 

  32. Volinia S, Calin GA, Liu C-G, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261.

    Article  CAS  Google Scholar 

  33. Barbano R, Pasculli B, Palumbo O, Galasso M, Volinia S, D'Angelo V et al. A miRNA signature distinguishing low-grade and high-grade gliomas shows miR-21 and 210 as promising biomarkers of aggressive phenotype and prognosis. Cancer Res 2014; 74 (19 Suppl): 1479–1479.

    Article  Google Scholar 

  34. Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 2009; 361: 1437–1447.

    Article  CAS  Google Scholar 

  35. Reddy SDN, Gajula RP, Pakala SB, Kumar R . MicroRNAs and cancer therapy. Cancer Biol Therapy 2010; 9: 479–482.

    Article  CAS  Google Scholar 

  36. Ruan K, Fang X, Ouyang G . MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett 2009; 285: 116–126.

    Article  CAS  Google Scholar 

  37. Iorio MV, Croce CM . MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2012; 4: 143–159.

    Article  CAS  Google Scholar 

  38. Dai X, Tan C . Combination of microRNA therapeutics with small-molecule anticancer drugs: mechanism of action and co-delivery nanocarriers. Adv Drug Deliv Rev 2015; 81: 184–197.

    Article  CAS  Google Scholar 

  39. Li Y, Kong D, Ahmad A, Bao B, Sarkar FH . MicroRNA targeted therapy for overcoming drug resistance, reversal of EMT and elimination of cancer stem cells in prostate and pancreatic cancer. Sarkar FH (ed). In: MicroRNA Targeted Cancer Therapy. Springer: Switzerland, 2014, pp 199–217.

    Book  Google Scholar 

  40. Garofalo M, Di Leva G, M Croce C . MicroRNAs as anti-cancer therapy. Curr Pharm Des 2014; 20: 5328–5335.

    Article  CAS  Google Scholar 

  41. Bai S, Nasser MW, Wang B, Hsu S-H, Datta J, Kutay H et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem 2009; 284: 32015–32027.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was conducted with financial support of Science and Research branch of Islamic Azad University and Isfahan University of Medical Sciences (Iran).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Najafi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, Z., Sharifi, M. & Javadi, G. Degradation of miR-21 induces apoptosis and inhibits cell proliferation in human hepatocellular carcinoma. Cancer Gene Ther 22, 530–535 (2015). https://doi.org/10.1038/cgt.2015.51

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2015.51

This article is cited by

Search

Quick links