Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EMMPRIN reduction via scFv-M6-1B9 intrabody affects α3β1-integrin and MCT1 functions and results in suppression of progressive phenotype in the colorectal cancer cell line Caco-2

Abstract

Extracellular matrix metalloproteinase inducer (EMMPRIN) exhibits overexpression in various cancers and promotes cancer progression and metastasis via the interaction with its associated molecules. The scFv-M6-1B9 intrabody has a potential ability to reduce EMMPRIN cell surface expression. However, the subsequent effect of scFv-M6-1B9 intrabody-mediated EMMPRIN abatement on its related molecules, α3β1-integrin, MCT1, MMP-2 and MMP-9, is undefined. Our results demonstrated that the scFv-M6-1B9 intrabody efficiently decreased α3β1-integrin cell surface expression levels. In addition, intracellular accumulation of MCT1 and lactate were increased. These results lead to suppression of features characteristic for tumor progression, including cell migration, proliferation and invasion, in a colorectal cancer cell line (Caco-2) although there was no difference in MMP expression. Thus, EMMPRIN represents an attractive target molecule for the disruption of cancer proliferation and metastasis. An scFv-M6-1B9 intrabody-based approach could be relevant for cancer gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    Article  Google Scholar 

  2. Ang CS, Phung J, Nice EC . The discovery and validation of colorectal cancer biomarkers. Biomed Chromatogr 2011; 25: 82–99.

    Article  CAS  Google Scholar 

  3. Huet E, Gabison EE, Mourah S, Menashi S . Role of emmprin/CD147 in tissue remodeling. Connect Tissue Res 2008; 49: 175–179.

    Article  CAS  Google Scholar 

  4. Kanekura T, Chen X . CD147/basigin promotes progression of malignant melanoma and other cancers. J Dermatol Sci 2009; 57: 149–154.

    Article  Google Scholar 

  5. Weidle UH, Scheuer W, Eggle D, Klostermann S, Stockinger H . Cancer-related issues of CD147. Cancer Genomics Proteomics 2010; 7: 157–169.

    CAS  PubMed  Google Scholar 

  6. Tang J, Wu YM, Zhao P, Yang XM, Jiang JL, Chen ZN . Overexpression of HAb18G/CD147 promotes invasion and metastasis via alpha3beta1 integrin mediated FAK-paxillin and FAK-PI3K-Ca2+ pathways. Cell Mol Life Sci 2008; 65: 2933–2942.

    Article  CAS  Google Scholar 

  7. Halestrap AP, Price NT . The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 1999; 343 (Pt 2): 281–299.

    Article  CAS  Google Scholar 

  8. Baba M, Inoue M, Itoh K, Nishizawa Y . Blocking CD147 induces cell death in cancer cells through impairment of glycolytic energy metabolism. Biochem Biophys Res Commun 2008; 374: 111–116.

    Article  CAS  Google Scholar 

  9. Gabison EE, Hoang-Xuan T, Mauviel A, Menashi S . EMMPRIN/CD147, an MMP modulator in cancer, development and tissue repair. Biochimie 2005; 87: 361–368.

    Article  CAS  Google Scholar 

  10. Aglund K, Rauvala M, Puistola U, Angstrom T, Turpeenniemi-Hujanen T, Zackrisson B et al. Gelatinases A and B (MMP-2 and MMP-9) in endometrial cancer-MMP-9 correlates to the grade and the stage. Gynecol Oncol 2004; 94: 699–704.

    Article  CAS  Google Scholar 

  11. Jouneau S, Khorasani N, DES P, Macedo P, Zhu J, Bhavsar PK et al. EMMPRIN (CD147) regulation of MMP-9 in bronchial epithelial cells in COPD. Respirology 2011; 16: 705–712.

    Article  Google Scholar 

  12. Kontermann RE . Intrabodies as therapeutic agents. Methods 2004; 34: 163–170.

    Article  CAS  Google Scholar 

  13. Williams BR, Zhu Z . Intrabody-based approaches to cancer therapy: status and prospects. Curr Med Chem 2006; 13: 1473–1480.

    Article  CAS  Google Scholar 

  14. Uprichard SL . The therapeutic potential of RNA interference. FEBS Lett 2005; 579: 5996–6007.

    Article  CAS  Google Scholar 

  15. Tragoolpua K, Intasai N, Kasinrerk W, Mai S, Yuan Y, Tayapiwatana C . Generation of functional scFv intrabody to abate the expression of CD147 surface molecule of 293A cells. BMC Biotechnol 2008; 8: 5.

    Article  Google Scholar 

  16. Intasai N, Tragoolpua K, Pingmuang P, Khunkaewla P, Moonsom S, Kasinrerk W et al. Potent inhibition of OKT3-induced T cell proliferation and suppression of CD147 cell surface expression in HeLa cells by scFv-M6-1B9. Immunobiology 2009; 214: 410–421.

    Article  CAS  Google Scholar 

  17. Meusser B, Hirsch C, Jarosch E, Sommer T . ERAD: the long road to destruction. Nat Cell Biol 2005; 7: 766–772.

    Article  CAS  Google Scholar 

  18. Paganetti P, Calanca V, Galli C, Stefani M, Molinari M . beta-site specific intrabodies to decrease and prevent generation of Alzheimer's Abeta peptide. J Cell Biol 2005; 168: 863–868.

    Article  CAS  Google Scholar 

  19. Rein DT, Breidenbach M, Wu H, Han T, Haviv YS, Wang M et al. Gene transfer to cervical cancer with fiber-modified adenoviruses. Int J Cancer 2004; 111: 698–704.

    Article  CAS  Google Scholar 

  20. Kanerva A, Hemminki A . Adenoviruses for treatment of cancer. Ann Med 2005; 37: 33–43.

    Article  CAS  Google Scholar 

  21. Gaggar A, Shayakhmetov DM, Lieber A . CD46 is a cellular receptor for group B adenoviruses. Nat Med 2003; 9: 1408–1412.

    Article  CAS  Google Scholar 

  22. Nilsson M, Ljungberg J, Richter J, Kiefer T, Magnusson M, Lieber A et al. Development of an adenoviral vector system with adenovirus serotype 35 tropism; efficient transient gene transfer into primary malignant hematopoietic cells. J Gene Med 2004; 6: 631–641.

    Article  CAS  Google Scholar 

  23. Carlson CA, Steinwaerder DS, Stecher H, Shayakhmetov DM, Lieber A . Rearrangements in adenoviral genomes mediated by inverted repeats. Methods Enzymol 2002; 346: 277–292.

    Article  CAS  Google Scholar 

  24. Muramatsu T, Miyauchi T . Basigin (CD147): a multifunctional transmembrane protein involved in reproduction, neural function, inflammation and tumor invasion. Histol Histopathol 2003; 18: 981–987.

    CAS  PubMed  Google Scholar 

  25. Sun J, Hemler ME . Regulation of MMP-1 and MMP-2 production through CD147/extracellular matrix metalloproteinase inducer interactions. Cancer Res 2001; 61: 2276–2281.

    CAS  PubMed  Google Scholar 

  26. Berditchevski F, Chang S, Bodorova J, Hemler ME . Generation of monoclonal antibodies to integrin-associated proteins. Evidence that alpha3beta1 complexes with EMMPRIN/basigin/OX47/M6. J Biol Chem 1997; 272: 29174–29180.

    Article  CAS  Google Scholar 

  27. Wilson MC, Meredith D, Halestrap AP . Fluorescence resonance energy transfer studies on the interaction between the lactate transporter MCT1 and CD147 provide information on the topology and stoichiometry of the complex in situ. J Biol Chem 2002; 277: 3666–3672.

    Article  CAS  Google Scholar 

  28. Chen X, Su J, Chang J, Kanekura T, Li J, Kuang YH et al. Inhibition of CD147 gene expression via RNA interference reduces tumor cell proliferation, activation, adhesion, and migration activity in the human Jurkat T-lymphoma cell line. Cancer Invest 2008; 26: 689–697.

    Article  CAS  Google Scholar 

  29. Kuang YH, Chen X, Su J, Wu LS, Liao LQ, Li D et al. RNA interference targeting the CD147 induces apoptosis of multi-drug resistant cancer cells related to XIAP depletion. Cancer Lett 2009; 276: 189–195.

    Article  CAS  Google Scholar 

  30. Su J, Chen X, Kanekura T . A CD147-targeting siRNA inhibits the proliferation, invasiveness, and VEGF production of human malignant melanoma cells by down-regulating glycolysis. Cancer Lett 2009; 273: 140–147.

    Article  CAS  Google Scholar 

  31. Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN, Halestrap AP . CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J 2000; 19: 3896–3904.

    Article  CAS  Google Scholar 

  32. Philp NJ, Ochrietor JD, Rudoy C, Muramatsu T, Linser PJ . Loss of MCT1, MCT3, and MCT4 expression in the retinal pigment epithelium and neural retina of the 5A11/basigin-null mouse. Invest Ophthalmol Vis Sci 2003; 44: 1305–1311.

    Article  Google Scholar 

  33. Li R, Pan Y, He B, Xu Y, Gao T, Song G et al. Downregulation of CD147 expression by RNA interference inhibits HT29 cell proliferation, invasion and tumorigenicity in vitro and in vivo. Int J Oncol 2013; 43: 1885–1894.

    Article  CAS  Google Scholar 

  34. Chen L, Pan Y, Gu L, Nie Z, He B, Song G et al. ERK1/2 signalling pathway is involved in CD147-mediated gastric cancer cell line SGC7901 proliferation and invasion. Exp Biol Med (Maywood) 2013; 238: 903–912.

    Article  Google Scholar 

  35. Mebratu Y, Tesfaigzi Y . How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle 2009; 8: 1168–1175.

    Article  CAS  Google Scholar 

  36. Lu Z, Xu S, ERK1/2 MAP . kinases in cell survival and apoptosis. IUBMB Life 2006; 58: 621–631.

    Article  CAS  Google Scholar 

  37. Curtin KD, Meinertzhagen IA, Wyman RJ . Basigin (EMMPRIN/CD147) interacts with integrin to affect cellular architecture. J Cell Sci 2005; 118 (Pt 12): 2649–2660.

    Article  CAS  Google Scholar 

  38. Dai JY, Dou KF, Wang CH, Zhao P, Lau WB, Tao L et al. The interaction of HAb18G/CD147 with integrin alpha6beta1 and its implications for the invasion potential of human hepatoma cells. BMC Cancer 2009; 9: 1–10.

    Article  Google Scholar 

  39. Tang Y, Nakada MT, Rafferty P, Laraio J, McCabe FL, Millar H et al. Regulation of vascular endothelial growth factor expression by EMMPRIN via the PI3K-Akt signaling pathway. Mol Cancer Res 2006; 4: 371–377.

    Article  CAS  Google Scholar 

  40. Chetty C, Bhoopathi P, Joseph P, Chittivelu S, Rao JS, Lakka S . Adenovirus-mediated small interfering RNA against matrix metalloproteinase-2 suppresses tumor growth and lung metastasis in mice. Mol Cancer Ther 2006; 5: 2289–2299.

    Article  CAS  Google Scholar 

  41. Giannelli G, Bergamini C, Fransvea E, Marinosci F, Quaranta V, Antonaci S . Human hepatocellular carcinoma (HCC) cells require both alpha3beta1 integrin and matrix metalloproteinases activity for migration and invasion. Lab Invest 2001; 81: 613–627.

    Article  CAS  Google Scholar 

  42. Gorman JL, Ispanovic E, Haas TL . Regulation of matrix metalloproteinase expression. Drug Discov Today Dis Models 2011; 8: 5–11.

    Article  CAS  Google Scholar 

  43. Bode W, Fernandez-Catalan C, Grams F, Gomis-Ruth FX, Nagase H, Tschesche H et al. Insights into MMP-TIMP interactions. Ann N Y Acad Sci 1999; 878: 73–91.

    Article  CAS  Google Scholar 

  44. Gaide Chevronnay HP, Selvais C, Emonard H, Galant C, Marbaix E, Henriet P . Regulation of matrix metalloproteinases activity studied in human endometrium as a paradigm of cyclic tissue breakdown and regeneration. Biochim Biophys Acta 1824; 1: 146–156.

    Google Scholar 

  45. Egeblad M, Werb Z . New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2: 161–174.

    Article  CAS  Google Scholar 

  46. Noda M, Oh J, Takahashi R, Kondo S, Kitayama H, Takahashi C . RECK: a novel suppressor of malignancy linking oncogenic signaling to extracellular matrix remodeling. Cancer Metastasis Rev 2003; 22: 167–175.

    Article  CAS  Google Scholar 

  47. Casslen B, Gustavsson B, Angelin B, Gafvels M . Degradation of urokinase plasminogen activator (UPA) in endometrial stromal cells requires both the UPA receptor and the low-density lipoprotein receptor-related protein/alpha2-macroglobulin receptor. Mol Hum Reprod 1998; 4: 585–593.

    Article  CAS  Google Scholar 

  48. Lescaille G, Menashi S, Cavelier-Balloy B, Khayati F, Quemener C, Podgorniak MP et al. EMMPRIN/CD147 up-regulates urokinase-type plasminogen activator: implications in oral tumor progression. BMC Cancer 2012; 12: 115.

    Article  CAS  Google Scholar 

  49. Quemener C, Gabison EE, Naimi B, Lescaille G, Bougatef F, Podgorniak MP et al. Extracellular matrix metalloproteinase inducer up-regulates the urokinase-type plasminogen activator system promoting tumor cell invasion. Cancer Res 2007; 67: 9–15.

    Article  CAS  Google Scholar 

  50. Lobato MN, Rabbitts TH . Intracellular antibodies and challenges facing their use as therapeutic agents. Trends Mol Med 2003; 9: 390–396.

    Article  CAS  Google Scholar 

  51. Jana S, Chakraborty C, Nandi S, Deb JK . RNA interference: potential therapeutic targets. Appl Microbiol Biotechnol 2004; 65: 649–657.

    Article  CAS  Google Scholar 

  52. Gotoh A, Nagaya H, Kanno T, Tagawa M, Nishizaki T . Fiber-substituted conditionally replicating adenovirus Ad5F35 induces oncolysis of human bladder cancer cells in in vitro analysis. Urology 2013; 81: 920.e7–11.

    Article  Google Scholar 

  53. Yu D, Jin C, Ramachandran M, Xu J, Nilsson B, Korsgren O et al. Adenovirus serotype 5 vectors with Tat-PTD modified hexon and serotype 35 fiber show greatly enhanced transduction capacity of primary cell cultures. PLoS One 2013; 8: e54952.

    Article  CAS  Google Scholar 

  54. Ni S, Bernt K, Gaggar A, Li ZY, Kiem HP, Lieber A . Evaluation of biodistribution and safety of adenovirus vectors containing group B fibers after intravenous injection into baboons. Hum Gene Ther 2005; 16: 664–677.

    Article  CAS  Google Scholar 

  55. Schagen FH, Ossevoort M, Toes RE, Hoeben RC . Immune responses against adenoviral vectors and their transgene products: a review of strategies for evasion. Crit Rev Oncol Hematol 2004; 50: 51–70.

    Article  Google Scholar 

  56. Liu Y, Tuve S, Persson J, Beyer I, Yumul R, Li ZY et al. Adenovirus-mediated intratumoral expression of immunostimulatory proteins in combination with systemic Treg inactivation induces tumor-destructive immune responses in mouse models. Cancer Gene Ther 2011; 18: 407–418.

    Article  CAS  Google Scholar 

  57. Hsu HH, Liu CJ, Shen CY, Chen YJ, Chen LM, Kuo WH et al. p38alpha MAPK mediates 17beta-estradiol inhibition of MMP-2 and -9 expression and cell migration in human lovo colon cancer cells. J Cell Physiol 2012; 227: 3648–3660.

    Article  CAS  Google Scholar 

  58. Figueira RC, Gomes LR, Neto JS, Silva FC, Silva ID, Sogayar MC . Correlation between MMPs and their inhibitors in breast cancer tumor tissue specimens and in cell lines with different metastatic potential. BMC Cancer 2009; 9: 1–11.

    Article  Google Scholar 

  59. Janssens N, Janicot M, Perera T, Bakker A . Housekeeping genes as internal standards in cancer research. Mol Diagn 2004; 8: 107–113.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Discovery-based Development Grant, Research Chair Grant from the National Sciences and Technology Development Agency (NSTDA), Thailand, the Thailand Research Fund (TRF) and the National Research University project under the Thailand Office of the Commission on Higher Education, Thailand. We thank Prof. André Lieber from the Division of Medical Genetics, University of Washington, Seattle, USA, for providing Ad5/F35 vector and Associate Professor Suchart Kothan from the Department of Radiologic Technology, Chiang Mai University, for his advice on NMR spectral analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Tragoolpua.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangboonruang, S., Thammasit, P., Intasai, N. et al. EMMPRIN reduction via scFv-M6-1B9 intrabody affects α3β1-integrin and MCT1 functions and results in suppression of progressive phenotype in the colorectal cancer cell line Caco-2. Cancer Gene Ther 21, 246–255 (2014). https://doi.org/10.1038/cgt.2014.24

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2014.24

This article is cited by

Search

Quick links