Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

New targets for the immunotherapy of colon cancer—does reactive disease hold the answer?

Abstract

Colorectal cancer (CRC) is one of the most commonly diagnosed cancers in both men and women, posing a serious demographic and economic burden worldwide. In the United Kingdom, CRC affects 1 in every 20 people and it is often detected once well established and after it has spread beyond the bowel (Stage IIA–C and Stage IIIA–C). A diagnosis at such advanced stages is associated with poor treatment response and survival. However, studies have identified two sub-groups of post-treatment CRC patients—those with good outcome (reactive disease) and those with poor outcome (non-reactive disease). We aim to review the state-of-the-art for CRC with respect to the expression of cancer-testis antigens (CTAs) and their identification, evaluation and correlation with disease progression, treatment response and survival. We will also discuss the relationship between CTA expression and regulatory T-cell (Treg) activity to tumorigenesis and tumor immune evasion in CRC and how this could account for the clinical presentation of CRC. Understanding the molecular basis of reactive CRC may help us identify more potent novel immunotherapeutic targets to aid the effective treatment of this disease. In this review, based on our presentation at the 2012 International Society for the Cell and Gene Therapy of Cancer annual meeting, we will summarize some of the most current advances in CTA and CRC research and their influence on the development of novel immunotherapeutic approaches for this common and at times difficult to treat disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

AJCC:

American Joint Committee on Cancer

AML:

acute myeloid leukemia

CEA:

carcinoembryonic antigen

CRC:

colorectal cancer

CTA:

cancer-testis antigen

CTL:

cytotoxic T lymphocyte

DAC:

5-aza-2′-deoxycytidine

DC:

dendritic cells

EBV:

Epstein–Barr virus

GIST:

gastrointestinal stromal tumor

IDP:

intrinsically disordered protein

pMHC:

peptide MHC

RAYS:

recombinant antigen expression on yeast surface

SADA:

serum antibody detection array

SEREX:

serological identification of antigens by recombinant expression cloning

SERPA:

serological proteome analysis

SSX:

synovial sarcoma X antigen

SSX2:

synovial sarcoma X breakpoint-2

TAA:

tumor-associated antigen

TNM:

tumor nodes metastases

Tregs:

regulatory T cells; TSP50: testes-specific protease 50

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM . Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127: 2893–2917.

    Article  CAS  PubMed  Google Scholar 

  2. Bray F, Ren JS, Masuyer E, Ferlay J . Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer 2013; 132: 1133–1145.

    CAS  PubMed  Google Scholar 

  3. Quaglia A, Vercelli M, Lillini R, Mugno E, Coebergh JW, Quinn M et al. Socio-economic factors and health care system characteristics related to cancer survival in the elderly. A population-based analysis in 16 European countries (ELDCARE project). Crit Rev Oncol Hematol 2005; 54: 117–128.

    PubMed  Google Scholar 

  4. Thun MJ, DeLancey JO, Center MM, Jemal A, Ward EM . The global burden of cancer: priorities for prevention. Carcinogenesis 2010; 31: 100–110.

    CAS  PubMed  Google Scholar 

  5. Jemal A, Center MM, De Santis C, Ward EM . Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 2010; 19: 1893–1907.

    PubMed  Google Scholar 

  6. WHO WHO Library Cataloguing-in-Publication Data. 2008-2013 action plan for the global strategy for the prevention and control of noncommunicable diseases: prevent and control cardiovascular diseases, cancers, chronic respiratory diseases and diabetes. World Health Organization 2008; Printed by the WHO Document Production Services: Geneva, Switzerland ISBN 978 92 4 159741 8.

  7. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A . AJCC Cancer Staging Manual 7th edn. Springer, New York, 2010.

    Google Scholar 

  8. Dukes CE . The classification of cancer of the rectum. J Pathol Bacteriol 1932; 35: 323–332.

    Google Scholar 

  9. Astler VB, Coller FA . The prognostic significance of direct extension of carcinoma of the colon and rectum. Annal Surg 1954; 139: 846–852.

    CAS  Google Scholar 

  10. Mayer J . Gastrointestinal tract cancer. In: Kasper D, Harrison’s Principles of Internal Medicine 16th edn. McGraw-Hill, Medical Pub. Division, New York, 2005 pp 527–531.

  11. O’Connell JB, Maggard MA, Ko CY . Colon cancer survival rates with the new America joint committee on cancer sixth edition staging. J Natl Cancer Inst 2004; 96: 1420–1425.

    PubMed  Google Scholar 

  12. Marshall JL, Haller DG, de Gramont A, Hochster H, Lenz HJ, Ajani JA et al. Adjuvant therapy for stage II and III colon cancer: consensus report of the international society of gastrointestinal oncology. Gastrointest Cancer Res 2007; 1: 146–154.

    PubMed  PubMed Central  Google Scholar 

  13. Zaniboni A, Labianca R . Adjuvant therapy for stage II colon cancer: an elephant in the living room? Ann Oncol 2004; 15: 1310–1318.

    CAS  PubMed  Google Scholar 

  14. Strul H, Arber N . Screening techniques for prevention and early detection of colorectal cancer in the average risk population. Gastrointest Cancer Res 2007; 1: 98–106.

    PubMed  PubMed Central  Google Scholar 

  15. National Cancer Institute Factsheets. Tests to detect colorectal cancer and polyps http://www.cancer.gov/cancertopics/factsheet/detection/colorectal-screening.

  16. Kim HJ, Yu MH, Kim H, Byun J, Lee C . Noninvasive molecular biomarkers for the detection of colorectal cancer. BMB reports 2008; 41: 685–692.

    CAS  PubMed  Google Scholar 

  17. Murphy J, O’Sullivan GC, Lee G, Madden M, Shanahan F, Collins JK et al. The inflammatory response within Dukes’ B colorectal cancers: implications for progression of micrometastasis and patient survival. Am J Gastroenterol 2000; 95: 3607–3614.

    CAS  PubMed  Google Scholar 

  18. Schlom J, Arlen PM, Gulley JL . Cancer vaccines: moving beyond current paradigms. Clin Cancer Res 2007; 13: 1776–1782.

    Google Scholar 

  19. Wollscheid B, Watts JD, Aebersold R . Proteomics/genomics and signaling in lymphocytes. Curr Opin Immunol 2004; 16: 337–344.

    CAS  PubMed  Google Scholar 

  20. Guinn BA, Bland EA, Lodi U, Liggins AP, Tobal K, Petters S et al. Humoral detection of leukaemia-associated antigens in presentation acute myeloid leukaemia. Biochem Biophys Res Commun 2005; 335: 1293–1304.

    CAS  PubMed  Google Scholar 

  21. Knights AJ, Weinzierl AO, Flad T, Guinn BA, Mueller L, Mufti GJ et al. A novel MHC-associated proteinase 3 peptide isolated from primary chronic myeloid leukaemia cells further supports the significance of this antigen for the immunotherapy of myeloid leukaemias. Leukemia 2006; 20: 1067–1072.

    CAS  PubMed  Google Scholar 

  22. Liggins AP, Guinn BA, Hatton CS, Pulford K, Banham AH . Serologic detection of diffuse large B-cell lymphoma-associated antigens. Int J Cancer 2004; 110: 563–569.

    CAS  PubMed  Google Scholar 

  23. Hanafusa T, Mohamed AE, Kitaoka K, Ohue Y, Nakayama E, Ono T . Isolation and characterization of human lung cancer antigens by serological screening with autologous antibodies. Cancer Lett 2011; 301: 57–62.

    CAS  PubMed  Google Scholar 

  24. Zou C, Shen J, Tang Q, Yang Z, Yin J, Li Z et al. Cancer-testis antigens expressed in osteosarcoma identified by gene microarray correlate with a poor patient prognosis. Cancer 2012; 118: 1845–1855.

    CAS  PubMed  Google Scholar 

  25. Qiu J, Hanash S . Autoantibody profiling for cancer detection. Clin Lab Med 2009; 29: 31–46.

    PubMed  Google Scholar 

  26. Fratta E, Coral S, Covre A, Parisi G, Colizzi F, Danielli R et al. The biology of cancer testis antigens: putative function, regulation and therapeutic potential. Mol Oncol 2011; 5: 164–182.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Old LJ . Cancer immunology: the search for specificity—G. H. A. Clowes Memorial Lecture. Cancer Res 1981; 41: 361–375.

    CAS  PubMed  Google Scholar 

  28. Thomas CM, Sweep CG . Serum tumor markers: past, state of the art, and future. The Int J Biol Markers 2001; 16: 73–86.

    CAS  PubMed  Google Scholar 

  29. Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ . Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 2005; 5: 615–625.

    CAS  PubMed  Google Scholar 

  30. Lim SH, Zhang Y, Zhang J . Cancer-testis antigens: the current status on antigen regulation and potential clinical use. Am J Blood Res 2012; 2: 29–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Caballero OL, Chen YT . Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci 2009; 100: 2014–2021.

    CAS  PubMed  Google Scholar 

  32. Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT . Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev 2002; 188: 22–32.

    CAS  PubMed  Google Scholar 

  33. Cheng YH, Wong EW, Cheng CY . Cancer/testis (CT) antigens, carcinogenesis and spermatogenesis. Spermatogenesis 2011; 1: 209–220.

    PubMed  PubMed Central  Google Scholar 

  34. De Smet C, Courtois SJ, Faraoni I, Lurquin C, Szikora JP, De Backer O et al. Involvement of two Ets binding sites in the transcriptional activation of the MAGE1 gene. Immunogenetics 1995; 42: 282–290.

    CAS  PubMed  Google Scholar 

  35. Ogawa K, Utsunomiya T, Mimori K, Yamashita K, Okamoto M, Tanaka F et al. Genomic screens for genes upregulated by demethylation in colorectal cancer: possible usefulness for clinical application. Int J Oncol 2005; 27: 417–426.

    CAS  PubMed  Google Scholar 

  36. Karpf AR . A potential role for epigenetic modulatory drugs in the enhancement of cancer/germ-line antigen vaccine efficacy. Epigenetics 2006; 1: 116–120.

    PubMed  Google Scholar 

  37. Old LJ . Cancer/testis (CT) antigens—a new link between gametogenesis and cancer. Cancer Immun 2001; 1: 1.

    CAS  PubMed  Google Scholar 

  38. Traversari C . Tumor-antigens recognized by T lymphocytes. Minerva Biotechnologica 1999; 11: 243–253.

    Google Scholar 

  39. Medin J . Experimental and applied immunotherapy. Springer, 2010: p11–p17.

    Google Scholar 

  40. Slingluff C . The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? Cancer J 2011; 17: 343–350.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jäger E, Chen YT, Drijfhout JW, Karbach J, Ringhoffer M, Jäger D et al. Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 1998; 187: 265–270.

    PubMed  PubMed Central  Google Scholar 

  42. Roswell Park Cancer InstituteVaccine therapy with or without sirolimus in treating patients with NY-ESO-1 expressing solid tumors. US National Institutes of Health 2012. (Currently ongoing clinical trial).

  43. Cancer Research Institute. Cancer vaccine collaborative: active clinical trials in FY. 2009 (http://www.cancerresearch.org/programs/research/Cancer-Vaccine-Collaborative/trials-2009.html).

  44. Marits P, Karlsson M, Thörn M, Wanqvist O . Sentinel node-based immunotherapy of colon cancer. In colorectal cancer: methods of cancer diagnosis, therapy and prognosis. Hayat MA (Ed). Springer, New York., 2009: p293.

    Google Scholar 

  45. Sahin U, Türeci O, Schmitt H, Cochlovius B, Johannes T, Schmits R et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 1995; 92: 11810–11813.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen YT, Scanlan MJ, Sahin U, Türeci O, Gure AO, Tsang AO et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 1997; 94: 1914–1918.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Old LJ, Chen Y-T . New paths in human cancer serology. J Exp Med 1998; 187: 1163–1167.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Türeci Ö, Sahin U, Pfreundschuh M . Serological analysis of human tumor antigens: molecular definition and implications. Molec Med Today 1997; 3: 342–349.

    Google Scholar 

  49. Zeng G, Wang X, Robbins PF, Rosenberg SA, Wang RF . CD4(+) T cell recognition of MHC class II-restricted epitopes from NY-ESO-1 presented by a prevalent HLA DP4 allele: association with NY-ESO-1 antibody production. Proc Natl Acad Sci USA 2001; 98: 3964–3969.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nakatsura T, Senju S, Yamada K, Jotsuka T, Ogawa M, Nashimura Y . Gene cloning of immunogenic antigens overexpressed in pancreatic cancer. Biochem Biophys Res Commun 2001; 281: 936–944.

    CAS  PubMed  Google Scholar 

  51. Nishikawa H, Tanida K, Ikeda H, Sakakura M, Miyahara Y, Aota T et al. Role of SEREX-defined immunogenic wild-type cellular molecules in the development of tumor-specific immunity. Proc Natl Acad Sci USA 2001; 98: 14571–14576.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Modugno FD, Bronzi G, Scanlan MJ, Del Bello D, Cascioli S, Venturo I et al. Human mena protein, a SEREX-defined antigen overexpressed in breast cancer eliciting both humoral and CD8+ T-cell immune response. Int J Cancer 2004; 109: 909–918.

    PubMed  Google Scholar 

  53. Nishikawa H, Kato T, Tawara I, Saito K, Ikeda H, Kuribayashi K et al. Definition of target antigens for naturally occurring CD4+ CD25+ regulatory T cells. J Exp Med 2005; 201: 681–686.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Neumann F, Wagner C, Preuss K-D, Kubuschok B, Schormann C, Stevanovic S et al. Identification of an epitope derived from the cancer testis antigen HOM-TES-14/SCP1 and presented by dendritic cells to circulating CD4+ T cells. Blood 2005; 106: 3105–3113.

    CAS  PubMed  Google Scholar 

  55. Cancer Immunome Database [http://ludwig-sun5.unil.ch/CancerImmunomeDB/].

  56. Hartmann TB, Bazhin AV, Schadendorf D, Eichmüller SB . SEREX identification of new tumor antigens linked to melanoma-associated retinopathy. Int J Cancer 2005; 114: 88–93.

    CAS  PubMed  Google Scholar 

  57. Mischo A, Wadle A, Wätzig K, Jäger D, Stockert E, Santiago D et al. Recombinant antigen expression on yeast surface (RAYS) for the detection of serological immune response to cancer. Cancer Immun 2003; 3: 5.

    PubMed  Google Scholar 

  58. Shan J, Yuan L, Xiao Q, Chiorazzi N, Budman D, Teichberg S et al. TSP50, a possible protease in human testis, is activated in breast cancer epithelial cells. Cancer Res 2002; 62: 290–294.

    CAS  PubMed  Google Scholar 

  59. Jin S, Wang Y, Zhang Y, Zhang HZ, Wang SJ, Tang JQ et al. Humoral immune responses against tumor-associated antigen OVA66 originally defined by serological analysis of recombinant cDNA expression libraries and its potentiality in cellular immunity. Cancer Sci 2008; 99: 1670–1678.

    CAS  PubMed  Google Scholar 

  60. Imai K, Hirata S, Irie A, Senju S, Ikuta Y, Yokomine K et al. Identification of HLA-A2-restricted CTL epitopes of a novel tumour-associated antigen, KIF20A, overexpressed in pancreatic cancer. Brit J Cancer 2011; 104: 300–307.

    CAS  PubMed  Google Scholar 

  61. Klein-Scory S, Kübler S, Diehl H, Eilert-Micus C, Reinacher-Schick A, Stühler K et al. Immunoscreening of the extracellular proteome of colorectal cancer cells. BMC Cancer 2012; 10: 70.

    Google Scholar 

  62. Forgber M, Trefzer U, Sterry W, Walden P . Proteome serological determination of tumor-associated antigens in melanoma. PLoS ONE 2009; 4: e5199.

    PubMed  PubMed Central  Google Scholar 

  63. Forgber M, Gellrich S, Sharav T, Sterry W, Walden P . Proteome-based analysis of serologically defined tumor-associated antigens in cutaneous lymphoma. PLoS ONE 2009; 4: e8376.

    PubMed  PubMed Central  Google Scholar 

  64. Klade CS, Voss T, Krystek E, Ahorn H, Zatloukal K, Pummer K et al. Identification of tumor antigens in renal cell carcinoma by serological proteome analysis. Proteomics 2001; 1: 890–898.

    CAS  PubMed  Google Scholar 

  65. Gagnon A, Kim J-H, Schorge JO, Ye B, Liu B, Hasselblatt K et al. Use of combination of approaches to identify and validate relevant tumor-associated antigens and their corresponding autoantibodies in ovarian cancer patients. Clin Cancer Res 2008; 14: 764–771.

    CAS  PubMed  Google Scholar 

  66. He Y, Wu Y, Mou Z, Li W, Zou L, Fu T et al. Proteomics-based identification of HSP60 as a tumor-associated antigen in colorectal cancer. Proteomics Clin Appl 2007; 1: 336–342.

    CAS  PubMed  Google Scholar 

  67. Suzuki A, Iizuka A, Komiyama M, Takikawa M, Kume A, Tai S et al. Identification of melanoma antigens using a serological proteome approach (SERPA). Cancer Genomics Proteomics 2010; 7: 17–24.

    CAS  PubMed  Google Scholar 

  68. Chen YT . Identification of human tumor antigens by serological expression cloning: an online review on SEREX. Cancer Immun 2004 [updated 2004; cited 1 April 2004] URL [http://www.cancerimmunity.org/serex].

  69. Jäger E, Knuth A . The discovery of cancer/testis antigens by autologous typing with T cell clones and the evolution of cancer vaccines. Cancer Immun 2004; 12: 6.

    Google Scholar 

  70. Chevalier F . Highlights on the capacities of “Gel-based” proteomics. Proteome Sci 2010; 8: 23.

    PubMed  PubMed Central  Google Scholar 

  71. Wadle A, Kubuschok B, Imig J, Wuellner B, Wittig C, Zwick C et al. Serological immune response to cancer testis antigen in patients with pancreatic cancer. Int J Cancer 2006; 119: 117–125.

    CAS  PubMed  Google Scholar 

  72. Jung V, Fischer E, Imig J, Kleber S, Nuber N, Reinshagen F et al. Yeast-based identification of prostate tumor antigens provides an effective vaccine platform. Anticancer Res 2010; 30: 895–902.

    CAS  PubMed  Google Scholar 

  73. Scanlan M, Welt S, Gordon C, Chen YT, Gure A, Stockert E et al. Cancer-related serological recognition of human colon cancer. Cancer Res 2002; 62: 4041–4047.

    CAS  PubMed  Google Scholar 

  74. Stempfer R, Syed P, Vierlinger K, Pichler R, Meese E, Leidinger P et al. Tumour auto-antibody screening: performance of protein microarrays using SEREX derived antigens. BMC Cancer 2010; 10: 627.

    PubMed  PubMed Central  Google Scholar 

  75. Gunawardana CG, Diamandis EP . High-throughput proteomic strategies for identifying tumour-associated antigens. Cancer Lett 2007; 249: 110–119.

    CAS  PubMed  Google Scholar 

  76. Gunawardana CG, Diamandis EP . Identifying novel antibody signatures in ovarian cancer using high-density protein microarrays. Clin Biochem 2008; 42: 426–429.

    PubMed  Google Scholar 

  77. Tsukahara T, Torigoe T, Tamura Y, Wada T, Kawaguchi S, Tsuruma T et al. Antigenic peptide vaccination: provoking immune response and clinical benefit for cancer. Curr Immunol Rev 2008; 4: 235–241.

    CAS  Google Scholar 

  78. Muderspach L, Wilczynski S, Roman L, Bade L, Felix J, Small LA et al. A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clin Cancer Res 2000; 6: 3406–3416.

    CAS  PubMed  Google Scholar 

  79. Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo T, Nakajima H et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA 2004; 101: 13885–13890.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bolonaki I, Kotsakis A, Papadimitraki E, Aggouraki D, Konsolakis G, Vagia A et al. Vaccination of patients with advanced non-small-cell lung cancer with an optimized cryptic human telomerase reverse transcriptase peptide. J Clin Oncol 2007; 25: 2727–2734.

    CAS  PubMed  Google Scholar 

  81. Noguchi M, Itoh K, Yao A, Mine T, Yamada A, Obata Y et al. Immunological evaluation of individualized peptide vaccination with a low dose of estramustine for HLA-A24+ HRPC patients. Prostate 2005; 63: 1–12.

    CAS  PubMed  Google Scholar 

  82. Soen Y, Chen DS, Kraft DL, Davis MM, Brown PO . Detection and characterization of cellular immune responses using peptide-MHC microarrays. PLoS Biol 2003; 1: e65.

    PubMed  PubMed Central  Google Scholar 

  83. Chen DS, Soen Y, Stuge TB, Lee PP, Weber JS, Brown PO et al. Marked differences in human melanoma antigen-specific T cell responsiveness after vaccination using a functional microarray. PLoS Med 2005; 2: e265.

    PubMed  PubMed Central  Google Scholar 

  84. Stockert E, Jäger E, Chen Y-T, Scanlan MJ, Gout I, Karbach J et al. A survey of the humoral immune response of cancer to a panel of human tumor antigens. J Exp Med 1998; 187: 1349–1354.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. US National Institutes of Health. 2012 Vaccine therapy with or without sirolimus in treating patients with NY-ESO-1 expressing solid tumors (http://clinicaltrials.gov/ct2/show/NCT01522820).

  86. Li M, Yuan YH, Han Y, Liu YX, Yan L, Wang Y et al. Expression profile of cancer-testis genes in 121 human colorectal cancer tissue and adjacent normal tissue. Clin Cancer Res 2005; 11: 1809–1814.

    CAS  PubMed  Google Scholar 

  87. Yuan L, Shan J, De Risi D, Broome J, Lovecchio J, Gal D et al. Isolation of novel gene, TSP50, by a hypomethylated DNA fragment in human breast cancer. Cancer Res 1999; 59: 3215–3221.

    CAS  PubMed  Google Scholar 

  88. Zheng L, Xie G, Duan G, Yan X, Li Q . High expression of testes-specific protease 50 is associated with poor prognosis in colorectal carcinoma. PLoS ONE 2011; 6: e22203.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Naaby-Hansen S, Mandal A, Wolkowicz MJ, Sen B, Westbrook VA, Shetty J et al. CABYR, a novel calcium-binding tyrosine phosphorylation-regulated fibrous sheath protein involved in capacitation. Dev Biol 2002; 242: 236–254.

    CAS  PubMed  Google Scholar 

  90. Chiriva-Internati M, Cobos E, Da Silva DM, Kast WM . Sperm fibrous sheath proteins: a potential new class of target antigens for use in human therapeutic cancer vaccines. Cancer Immun 2008; 8: 8.

    PubMed  PubMed Central  Google Scholar 

  91. Luo C, Xiao X, Liu D, Chen S, Li M, Xu A et al. CABYR is a novel cancer-testis antigen in lung cancer. Clin Cancer Res 2007; 13: 1288–1297.

    CAS  PubMed  Google Scholar 

  92. Hsu HC, Lee YL, Cheng TS, Howng SL, Chang LK, Lu PJ et al. Characterization of two non-testis-specific CABYR variants that bind to GSK3beta with a proline-rich extensin-like domain. Biochem Biophys Res Commun 2005; 329: 1108–1117.

    CAS  PubMed  Google Scholar 

  93. Li H, Fang L, Xiao X, Shen L . The expression and effects the CABYR-c transcript of CABYR gene in hepatocellular carcinoma. Bull Cancer 2012; 99: E26–E33.

    PubMed  Google Scholar 

  94. Tseng YT, Hsia JY, Chen CY, Lin NT, Chong PC, Yang CY . Expression of the sperm fibrous sheath protein CABYR in human cancers and identification of alpha-enolase as an interacting partner of CABYR-a. Oncol rep 2011; 25: 1169–1175.

    CAS  PubMed  Google Scholar 

  95. Shantha Kumara HMC, Caballero OL, Su T, Yan X, Ahmed A, Herath SAC et al. The cancer testis antigens CABYR a/b and CABY C are expressed in a subset of colorectal cancers and hold promise as targets for specific immunotherapy. Gastroenterol 2012; 142: S–936 Suppl 1. (Abstract).

    Google Scholar 

  96. Jagadish N, Rana R, Mishra D, Kumar M, Suri A . Sperm associated antigen 9 (SPAG9): a new member of c-Jun NH2-terminal kinase (JNK) interacting protein exclusively expressed in testis. Keio J Med 2005; 54: 66–71.

    CAS  PubMed  Google Scholar 

  97. Garg M, Chaurasiya D, Rana R, Jagadish N, Kanojia D, Dudha N et al. Sperm-associated antigen 9, a novel cancer testis antigen, is a potential target for immunotherapy in epithelial ovarian cancer. Clin Cancer Res 2007; 13: 1421–1428.

    CAS  PubMed  Google Scholar 

  98. Garg M, Kanojia D, Suri S, Gupta S, Gupta A, Suri A . Sperm-associated antigen 9: a novel diagnostic marker for thyroid cancer. J Clin Endocrinol Metab 2009; 94: 4613–4618.

    CAS  PubMed  Google Scholar 

  99. Kanojia D, Garg M, Saini S, Agarwal S, Kumar R, Suri A . Sperm associated antigen 9 expression and humoral response in chronic myeloid leukemia. Leuk Res 2010; 34: 858–863.

    CAS  PubMed  Google Scholar 

  100. Kanojia D, Garg M, Gupta S, Gupta A, Suri A . Sperm-associated antigen 9 is a novel biomarker for colorectal cancer and is involved in tumor growth and tumorigenicity. Am J of Pathol 2011; 178: 1009–1020.

    CAS  Google Scholar 

  101. Song MH, Ha JC, Lee SM, Park YM, Lee SY . Identification of BCP-20 (FBXO39) as a cancer/testis antigen from colon cancer patients by SEREX. Biochem Biophys Res Commun 2011; 408: 195–201.

    CAS  PubMed  Google Scholar 

  102. Chen Z, Li M, Yuan Y, Wang Q, Yan L, Gu J . Cancer/testis antigens and clinical risk factors for liver metastasis of colorectal cancer: a predictive panel. Dis Colon Rectum 2010; 53: 31–38.

    PubMed  Google Scholar 

  103. De Plaen E, De Backer O, Arnaud D, Bonjean B, Chomez P, Martelange V et al. A new family of mouse genes homologous to the human MAGE genes. Genomics 1999; 55: 176–184.

    CAS  PubMed  Google Scholar 

  104. Takahashi N, Ohkuri T, Homma S, Ohtake J, Wakita D, Togashi Y et al. First clinical trial of cancer vaccine therapy with artificially synthesized helper/killer-hybrid epitope long peptide of MAGE-A4 cancer antigen. Cancer Sci 2012; 103: 150–153.

    CAS  PubMed  Google Scholar 

  105. Yokoe T, Tanaka F, Mimori K, Inoue H, Ohmachi T, Kusunoki M et al. Efficient identification of a novel cancer/testis antigen for immunotherapy using three-step microarray analysis. Cancer Res 2008; 68: 1074–1082.

    CAS  PubMed  Google Scholar 

  106. Choi J, Chang H . The expression of MAGE and SSX, and correlation of COX2, VEGF, and survivin in colorectal cancer. Anticancer Res 2012; 32: 559–564.

    CAS  PubMed  Google Scholar 

  107. Türeci O, Sahin U, Schobert I, Koslowski M, Schmitt H, Schild HJ et al. The SSX-2 gene, which is involved in the t(X;18) translocation of synovial sarcomas, codes for the human tumor antigen HOM-MEL-40. Cancer Res 1996; 56: 4766–4772.

    PubMed  Google Scholar 

  108. Ayyoub M, Hesdorffer CS, Montes M, Merlo A, Speiser D, Rimoldi D et al. An immunodominant SSX-2-derived epitope recognized by CD4+ T cells in association with HLA-DR. J Clin Invest 2004; 113: 1225–1233.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Smith HA, McNeel DG . The SSX family of cancer-testis antigens as target proteins for tumor therapy. Clin Dev Immunol 2010; 2010: 150591.

    PubMed  PubMed Central  Google Scholar 

  110. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    CAS  PubMed  Google Scholar 

  111. Krivtsov A, Twomey D, Feng Z, Stubbs M, Wang Y, Faber J et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442: 818–822.

    CAS  PubMed  Google Scholar 

  112. Wang C, Xie J, Guo J, Manning HC, Gore JC, Guo N . Evaluation of CD44 and CD133 as cancer stem cell markers for colorectal cancer. Oncol Rep 2012; 28: 1301–1308.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ricci-Vitiani L, Lombardi D, Pilozzi E, Biffoni M, Todaro M, Peschle C et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445: 111–115.

    CAS  PubMed  Google Scholar 

  114. Horst D, Kriegl L, Engel J, Kirchner T, Jung A . Prognostic significance of the cancer stem cell markers CD133, CD44, and CD166 in colorectal cancer. Cancer Invest 2009; 2: 844–850.

    Google Scholar 

  115. Choi D, Lee H, Hur K, Kim J, Park G, Jang S et al. Cancer stem cell markers CD133 and CD24 correlate with invasiveness and differentiation in colorectal adenocarcinoma. World J Gastroenterol 2007; 15: 2258–2264.

    Google Scholar 

  116. Horst D, Kriegl L, Engel J, Jung A, Kirchner T . CD133 and nuclear beta-catenin: the marker combination to detect high risk cases of low stage colorectal cancer. Eur J Cancer 2009; 45: 2034–2040.

    CAS  PubMed  Google Scholar 

  117. Lin J, Lin C, Yang S, Wang H, Jiang J, Lan Y et al. Early postoperative CEA level is a better prognostic indicator than is preoperative CEA level in predicting prognosis of patients with curable colorectal cancer. Int J Colorectal Dis 2011; 26: 1135–1141.

    PubMed  Google Scholar 

  118. Yeh C, Hsieh P, Chiang J, Lai C, Chen J, Wang J et al. Preoperative carcinoembryonic antigen elevation in colorectal cancer. Hepatogastroenterology 2011; 58: 1171–1176.

    PubMed  Google Scholar 

  119. Kirat H, Ozturk E, Lavery I, Kiran R . The predictive value of preoperative carcinoembryonic antigen level in the prognosis of colon cancer. Am J Surg 2012; 204: 447–452.

    CAS  PubMed  Google Scholar 

  120. Burgdorf S . Dendritic cell vaccination of patients with metastatic colorectal cancer. Dan Med Bull 2010; 57: B4171.

    PubMed  Google Scholar 

  121. Lesterhuis W, De Vries I, Schreibelt G, Schuurhuis D, Aarntzen E, De Boer A et al. Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res 2010; 30: 5091–5097.

    PubMed  Google Scholar 

  122. Staff C, Mozaffari F, Haller BK, Wahren B, Liljefors M . A phase I safety study of plasmid DNA immunization targeting carcinoembryonic antigen in colorectal cancer patients. Vaccine 2011; 29: 6817–6822.

    CAS  PubMed  Google Scholar 

  123. Hong X, Dong T, Hu J, Yi T, Li W, Zhang Z et al. Synergistical toll-like receptors activated dendritic cells induce antitumor effects against carcinoembryonic antigen-expressing colon cancer. Int J Colorectal Dis 2012; 28: 25–33 (E-pub ahead of print).

    PubMed  Google Scholar 

  124. Sharma A, Bode B, Wenger RH, Lehmann K, Sartori AA, Moch H et al. γ-radiation promotes immunological recognition of cancer cells through increased expression of cancer-testis antigens in vitro and in vivo. PLoS ONE 2011; 6: e28217.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Guinn B, Greiner J, Schmitt M, Mills KI . Elevated expression of the leukemia-associated antigen SSX2IP predicts survival in acute myeloid leukemia patients who lack detectable cytogenetic rearrangements. Blood 2009; 113: 1203–1204.

    CAS  PubMed  Google Scholar 

  126. Greiner J, Bullinger L, Guinn BA, Döhner H, Schmitt M . Leukaemia-associated antigens are critical for the proliferation of acute myeloid leukaemia cells. Clin Cancer Res 2008; 14: 7161–7166.

    CAS  PubMed  Google Scholar 

  127. Perez D, Hauswirth F, Jäger D, Metzger U, Samartzis EP, Went P et al. Protein expression of cancer testis antigens predicts tumor recurrence and treatment response to imatinib in gastrointestinal stromal tumors. Intl J Cancer 2011; 128: 2947–2952.

    CAS  Google Scholar 

  128. Luetkens T, Schafhausen P, Uhlich F, Stasche T, Akbulak R, Bartels BM et al. Expression, epigenetic regulation, and humoral immunogenicity of cancer-testis antigens in chronic myeloid leukemia. Leuk Res 2010; 34: 1647–1655.

    CAS  PubMed  Google Scholar 

  129. Smith HA, McNeel DG . Vaccines targeting the cancer-testis antigen SSX-2 elicit HLA-A2 epitope-specific cytolytic T cells. J Immunother 2011; 34: 569–580.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Shiraishi T, Terada N, Zeng Y, Suyama T, Luo J, Trock B et al. Cancer/testis antigens as potential predictors of biochemical recurrence of prostate cancer following radical prostatectomy. J Transl Med 2011; 9: 153.

    PubMed  PubMed Central  Google Scholar 

  131. Boehmer L, Keller L, Mortezavi A, Provenzano M, Sais G, Hermanns T et al. MAGE-C2/CT10 protein expression is an independent predictor of recurrence in prostate cancer. PLoS ONE 2011; 6: e21366.

    Google Scholar 

  132. Tajima K, Obata Y, Tamaki H, Yoshida M, Chen YT, Scanlan MJ et al. Expression of cancer/testis (CT) antigens in lung cancer. Lung Cancer 2003; 42: 23–33.

    PubMed  Google Scholar 

  133. van Duin M, Broyl A, de Knegt Y, Goldschmidt H, Richardson PG, Hop WCJ et al. Cancer testis antigens in newly diagnosed and relapse multiple myeloma: prognostic markers and potential targets for immunotherapy. Haematologica 2011; 96: 1662–1669.

    PubMed  PubMed Central  Google Scholar 

  134. Pollack SM, Jungbluth AA, Hoch BL, Farrar EA, Bleakley M, Schneider DJ et al. NY-ESO-1 is a ubiquitous immunotherapeutic target antigen for patients with myxoid/round cell liposarcoma. Cancer 2012; 118: 4564–4570.

    CAS  PubMed  Google Scholar 

  135. Lapillonne H, Renneville A, Auvrignon A, Flamant C, Blaise A, Perot C et al. High WT1 expression after induction therapy predicts high risk of relapse and death in acute myeloid leukemia. J Clin Oncol 2006; 24: 1507–1515.

    CAS  PubMed  Google Scholar 

  136. John A, Liu Y, Tobal K . Detection of minimal residual disease in acute myeloid leukemia: methodologies, clinical and biological significance. Brit J Haematol 2002; 106: 578–590.

    Google Scholar 

  137. Shiraishi T, Getzenberg RH, Kulkarni P . Cancer/testis antigens: novel tools for discerning aggressive from non-aggressive prostate cancer. Asian J Androl 2012; 14: 400–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Gnjatic S, Altorki NK, Tang DN, Tu SM, Kundra V, Ritter G et al. NY-ESO-1 DNA vaccine induces T-cell responses that are suppressed by regulatory T cells. Clin Cancer Res 2009; 15: 2130–2139.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhang S, Zhou X, Yu H, Yu Y . Expression of tumour-specific antigen MAGE, GAGE and BAGE in ovarian cancer tissues and cell lines. BMC Cancer 2010; 10: 163.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Mossman D, Kim K, Scott RJ . Demethylation by 5-aza-2’-deoxyxytidine in colorectal cancer cells target genomic DNA whilst promoter CpG island methylation persists. BMC Cancer 2010; 10: 366.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Robins RA, Rees RC . Cancer/testis antigens and cancer immunology. In: Immunology and Medicine Series 2001; 30: 28–37.

    Google Scholar 

  142. Glazer CA, Smith IM, Ochs MF, Begum S, Westra W, Chang SS et al. Integrative discovery of epigenetically depressed cancer testis antigens in NSCLC. PLoS ONE 2009; 4: e8189.

    PubMed  PubMed Central  Google Scholar 

  143. Goldberg AL, Rock KL . Proteolysis, proteasomes and antigen presentation. Nature 1992; 357: 375–379.

    CAS  PubMed  Google Scholar 

  144. Chou J, Voong LN, Mortales CL, Towlerton AM, Pollack SM, Chen X et al. Epigenetic modulation to enable antigen-specific T-cell therapy of colorectal cancer. J Immunother 2012; 35: 131–141.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Weinberg RA . The Biology of Cancer. Garland Science, 2007: p703–p707.

    Google Scholar 

  146. Curiel T . Tregs and rethinking cancer immunotherapy. J Clin Invest 2007; 117: 1167–1174.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Holmén N, Lundgren A, Lundin S, Bergin AM, Rudin A, Sjövall H et al. Functional CD4+CD25high regulatory T cells are enriched in the colonic mucosa of patients with active ulcerative colitis and increase with disease activity. Inflamm Bowel Dis 2006; 12: 447–456.

    PubMed  Google Scholar 

  148. Mougiakakos D . Regulatory T cells in colorectal cancer: from biology to prognostic significance. Cancers 2011; 3: 1708–1731.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Correale P, Cusi MG, Tsang KY, Del Vecchio MD, Marsili S, Placa ML et al. Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients. J Clin Oncol 2005; 23: 8950–8958.

    CAS  PubMed  Google Scholar 

  150. Bonertz A, Weitz J, Pietsch D, Rahbari N, Schlude C, Ge Y et al. Antigen-specific tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J Clin Invest 2009; 119: 3311–3321.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Nosho K, Baba Y, Tanaka N, Shima K, Hayashi M, Meyerhardt JA et al. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J Pathol 2010; 222: 350–366.

    PubMed  PubMed Central  Google Scholar 

  152. Pagès F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 2005; 353: 2654–2666.

    PubMed  Google Scholar 

  153. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313: 1960–1964.

    CAS  PubMed  Google Scholar 

  154. Pagès F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 2009; 27: 5944–5951.

    PubMed  Google Scholar 

  155. Salama P, Stewart C, Forrest C, Platell C, Iacopetta B . FOXP3+ cell density in lymphoid follicles from histologically normal mucosa is a strong prognostic factor in early stage colon cancer. Cancer Immunol Immunother 2012; 61: 1183–1190.

    CAS  PubMed  Google Scholar 

  156. Rajagopalan K, Mooney S, Parekh N, Getzenberg R, Kulkarni P . A majority of the cancer/testis antigens are intrinsically disordered proteins. J Cell Biochem 2011; 112: 3256–3267.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Marsh J, Dancheck B, Ragusa M, Allaire M, Forman-Kay D, Peti W . Structural diversity in free and bound states of intrinsically disordered protein phosphatase 1 regulators. Structure 2010; 18: 1094–1103.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Kulkarni P, Rajagopalan K, Yeater D, Getzenberg RH . Protein folding and the order/disorder paradox. J Cell Biochem 2011; 112: 1949–1952.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhou HX, Pang X, Lu C . Rate constants and mechanisms of intrinsically disordered proteins binding to structured targets. Phys Chem Chem Phys 2012; 14: 10466–10476.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Sigalov A . Uncoupled binding and folding of immune signaling-related intrinsically disordered proteins. Prog Biophys Mol Biol 2011; 106: 525–536.

    CAS  PubMed  Google Scholar 

  161. Zhou HX . Intrinsic disorder: signaling via highly specific but short-lived association. Trends Biochem Sci 2012; 37: 43–48.

    CAS  PubMed  Google Scholar 

  162. Brown C, Johnson A, Dunker A, Daughdrill G . Evolution and disorder. Curr Opinion Struct Biol 2011; 21: 441–446.

    CAS  Google Scholar 

  163. Midic U, Oldfield C, Dunker A, Obradovic Z, Uversky V . Protein disorder in the human diseasome: unfoldomics of human genetic diseases. BMC Genomics 2009; 10: S12.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded in part by Cork Cancer Research Center. SAB and SEB were funded by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B-A Guinn.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boncheva, V., Bonney, S., Brooks, S. et al. New targets for the immunotherapy of colon cancer—does reactive disease hold the answer?. Cancer Gene Ther 20, 157–168 (2013). https://doi.org/10.1038/cgt.2013.5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2013.5

Keywords

This article is cited by

Search

Quick links